Explanation:
The kinetic energy is said to be possessed due to the motion of the object. An object at rest will have zero kinetic energy and if it is in motion it will have some kinetic energy. The mathematical expression for kinetic energy is given by :
...........(1)
Where
m is the mass of the object
v is the velocity of object
It is clear form expression (1) that the kinetic energy of the object is directly proportional to the mass and velocity of an object.
So, the hypothesis for the mass and kinetic energy can be written as " when the mass of the object increases, its kinetic energy also increases because there exists a direct relationship between the mass and the kinetic energy of the object".
Answer:
The normal force will be lower than the gravitational force acting on the car. Therefore the answer is N < mg, which is <em>option B</em>.
Explanation:
Over a round hill, the centripetal force acting toward the the radius of the hill supports the gravitational force (mg) of the car. This notion can be expressed mathematically as follows:
At the top of a round hill

At the foot of a round hill

Answer:
because it’s suppose to be red like a stop light.
Explanation:
So it tells you to stop
Answer:
F=12.5N
Explanation:
Net force = rate of change of momentum

so find the change of momentum P
Pdown

Pup

dP = change in P

so
Answer:
+16 J
Explanation:
We can solve the problem by using the 1st law of thermodynamics:

where
is the change of the internal energy of the system
Q is the heat (positive if supplied to the system, negative if dissipated by the system)
W is the work done (positive if done by the system, negative if done by the surroundings on the system)
In this case we have:
Q = -12 J is the heat dissipated by the system
W = -28 J is the work done ON the system
Substituting into the equation, we find the change in internal energy of the system:
