Complete Question
Potassium is a crucial element for the healthy operation of the human body. Potassium occurs naturally in our environment and thus our bodies) as three isotopes: Potassium-39, Potassium-40, and Potassium-41. Their current abundances are 93.26%, 0.012% and 6.728%. A typical human body contains about 3.0 grams of Potassium per kilogram of body mass. 1. How much Potassium-40 is present in a person with a mass of 80 kg? 2. If, on average, the decay of Potassium-40 results in 1.10 MeV of energy absorbed, determine the effective dose (in Sieverts) per year due to Potassium-40 in an 80- kg body. Assume an RBE of 1.2. The half-life of Potassium-40 is
years.
Answer:
The potassium-40 present in 80 kg is ![Z = 0.0288 *10^{-3}\ kg](https://tex.z-dn.net/?f=Z%20%3D%200.0288%20%2A10%5E%7B-3%7D%5C%20kg)
The effective dose absorbed per year is
per year
Explanation:
From the question we are told that
The mass of potassium in 1 kg of human body is ![m = 3g= \frac{3}{1000} = 3*10^{-3} \ kg](https://tex.z-dn.net/?f=m%20%3D%20%203g%3D%20%5Cfrac%7B3%7D%7B1000%7D%20%3D%20%203%2A10%5E%7B-3%7D%20%5C%20kg)
The mass of the person is ![M = 80 \ kg](https://tex.z-dn.net/?f=M%20%3D%2080%20%5C%20kg)
The abundance of Potassium-39 is 93.26%
The abundance of Potassium-40 is 0.012%
The abundance of Potassium-41 is 6.78 %
The energy absorbed is ![E = 1.10MeV = 1.10 *10^{6} * 1.602 *10^{-19} = 1.7622*10^{-13} J](https://tex.z-dn.net/?f=E%20%3D%20%201.10MeV%20%3D%201.10%20%2A10%5E%7B6%7D%20%2A%201.602%20%2A10%5E%7B-19%7D%20%3D%201.7622%2A10%5E%7B-13%7D%20J)
Now 1 kg of human body contains
of Potassium
So 80 kg of human body contains k kg of Potassium
=> ![k = \frac{ 80 * 3*10^{-3}}{1}](https://tex.z-dn.net/?f=k%20%3D%20%5Cfrac%7B%2080%20%2A%203%2A10%5E%7B-3%7D%7D%7B1%7D)
![k = 0.240\ kg](https://tex.z-dn.net/?f=k%20%3D%200.240%5C%20%20kg)
Now from the question potassium-40 is 0.012% of the total potassium so
Amount of potassium-40 present is mathematically represented as
![Z = \frac{0.012}{100} * 0.240](https://tex.z-dn.net/?f=Z%20%3D%20%5Cfrac%7B0.012%7D%7B100%7D%20%20%2A%200.240)
![Z = 0.0288 *10^{-3}\ kg](https://tex.z-dn.net/?f=Z%20%3D%200.0288%20%2A10%5E%7B-3%7D%5C%20kg)
The effective dose (in Sieverts) per year due to Potassium-40 in an 80- kg body is mathematically evaluated as
![D = \frac{E}{M}](https://tex.z-dn.net/?f=D%20%3D%20%20%5Cfrac%7BE%7D%7BM%7D)
Substituting values
![D = \frac{1.7622*10^{-13}}{80}](https://tex.z-dn.net/?f=D%20%3D%20%20%5Cfrac%7B1.7622%2A10%5E%7B-13%7D%7D%7B80%7D)
![D = 2.2*10^{-15} J/kg](https://tex.z-dn.net/?f=D%20%3D%20%202.2%2A10%5E%7B-15%7D%20J%2Fkg)
Converting to Sieverts
We have
![D_s = REB * D](https://tex.z-dn.net/?f=D_s%20%3D%20REB%20%2A%20D)
![D_s = 1.2 * 2.2 *10^{-15}](https://tex.z-dn.net/?f=D_s%20%3D%201.2%20%2A%202.2%20%2A10%5E%7B-15%7D)
![D_s = 2.64 *10^{-15}](https://tex.z-dn.net/?f=D_s%20%3D%20%202.64%20%2A10%5E%7B-15%7D)
So
for half-life (
) the dose is ![2.64 *10^{-15}](https://tex.z-dn.net/?f=2.64%20%2A10%5E%7B-15%7D)
Then for 1 year the dose would be x
=> ![x = \frac{2.64 *10^{-15}}{1.28 * 10^9}](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B2.64%20%2A10%5E%7B-15%7D%7D%7B1.28%20%2A%2010%5E9%7D)
per year