Well, the diameter of a circle is simply a length, so your measurement will have units of length. We just have to find an answer that has only units of length.
A). gram, second . . . mass and time. That can't be it.
B). kilogram, ampere . . . mass and current. That can't be it.
C). centimeter, meter . . . both lengths. This one is looking good.
D). candela, mole . . . light intensity and some chemical thing. That can't be it.
So it can't be anything else on this list but <em>C</em> .
Answer:
metre per seconds
Explanation:
because velocity = distance ÷ time
We have that valence electrons poses the three characteristics stated, as
Group 14 (carbon group) are identified by 4 valence electrons.
Valence electrons of atoms are used to form bonds.
Group 14 (carbon group) are identified by 4 valence electrons.
Option A,B,C
<h3>
Properties of Valence electrons</h3>
All elements in the same group or family have the same number of valence electrons: Yes, this is true as Group 14 (carbon group) are identified by 4 valence electrons.
Valence electrons are the only subatomic particles involved in forming bonds: Yes, Valence electrons of atoms are used to form bonds.
Carbon has 4 valence electrons because it is found in group 14:
True, Group 14 (carbon group) are identified by 4 valence electrons.
For more information on atoms visit
brainly.com/question/13981855
Answer:
The answer is below
Explanation:
A diver works in the sea on a day when the atmospheric pressure is 101 kPa. The diver uses compressed air to breathe under water. 1700 litres of air from the atmosphere is compressed into a 12-litre gas cylinder. The compressed air quickly cools to its original temperature. Calculate the pressure of the air in the cylinder.
Solution:
Boyles law states that the volume of a given gas is inversely proportional to the pressure exerted by the gas, provided that the temperature is constant.
That is:
P ∝ 1/V; PV = constant
P₁V₁ = P₂V₂
Given that P₁ = initial pressure = 101 kPa, V₁ = initial volume = 1700 L, P₂ = cylinder pressure, V₂ = cylinder volume = 12 L. Hence:
P₁V₁ = P₂V₂
100 kPa * 1700 L = P₂ * 12 L
P₂ = (100 kPa * 1700 L) / 12 L
P₂ = 14308 kPa