The shape is connected in parallel so;
5.1) Ans;
5.2) Ans;
I hope I helped you^_^
Answer:
Explanation:
For answer this we will use the law of the conservation of the angular momentum.
so:
where is the moment of inertia of the merry-go-round, is the initial angular velocity of the merry-go-round, is the moment of inertia of the merry-go-round and the child together and is the final angular velocity.
First, we will find the moment of inertia of the merry-go-round using:
I =
I =
I = 359.375 kg*m^2
Where is the mass and R is the radio of the merry-go-round
Second, we will change the initial angular velocity to rad/s as:
W = 0.520*2 rad/s
W = 3.2672 rad/s
Third, we will find the moment of inertia of both after the collision:
Finally we replace all the data:
Solving for :
Answer - B. Betelguese.
I really hope this helps!!
Answer:
A) Three hole punch and either a layered plastic or paper
B) Identify the lengths involved ,
Length of input arm / length of output arm = L1/ L2
Explanation:
<u>a) Materials involved includes :</u>
Three hole punch and either a layered plastic or paper
Identify the forces acting on the three-hole punch which are Input and output forces
Identify the points where they act
<u>B) procedures involved </u>
The mechanical advantage = output force / input force
step one: Identify the lengths involved
assuming no friction or relatively small friction \
mechanical advantage can be calculated as : Length of input arm / length of output arm = L1/ L2
Vertical forces:
There is a force of 579N acting upward, and a force of 579N
acting downward.
The vertical forces are balanced ... they add up to zero ...
so there's no vertical acceleration.
Not up, not down.
Horizontal forces:
There is a force of 487N acting to the left, and a force of 632N
acting to the right.
The net horizontal force is
(487-left + 632-right) - (632-right - 487-right) = 145N to the right.
The net force on the car is all to the right.
The car accelerates to the right.