Answer:
Q = 6.33μC
Explanation:
To find the value of the charge Q you take into account both gravitational force and electric force over each ball. By symmetry you can use the fact that both balls experiences the same forces. Hence you only take into account the forces for one ball for the x component and y component:

M: mass of the ball = 0.09kg
T: tension of the string
F_e: electric force between charges
angle = 45°
The electric force is given by:

Q: charge of the balls
r: distance between balls = 2m
You divide both equation in order to eliminate the tension T:

By doing Q the subject of the formula and replacing you obtain:

hence, the charge of the balls is 6.33μC
Answer:
The magnitude of the magnetic torque on the coil is 1.98 A.m²
Explanation:
Magnitude of magnetic torque in a flat circular coil is given as;
τ = NIASinθ
where;
N is the number of turns of the coil
I is the current in the coil
A is the area of the coil
θ is the angle of inclination of the coil and magnetic field
Given'
Number of turns, N = 200
Current, I = 7.0 A
Angle of inclination, θ = 30°
Diameter, d = 6 cm = 0.06 m
A = πd²/4 = π(0.06)²/4 = 0.002828 m²
τ = NIASinθ
τ = 200 x 7 x 0.002828 x Sin30
τ = 1.98 A.m²
Therefore, the magnitude of the magnetic torque on the coil is 1.98 A.m²
the answer your looking for is Optical instrument.
Answer:
2) twice the amplitude and half the wavelength
Explanation:
I think it is D
Hope my answer help you?