1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
german
3 years ago
6

Which of the following jobs does not require good swimming ability

Physics
1 answer:
lara [203]3 years ago
4 0
What are the jobs that you have to choose from
You might be interested in
A train slows down as it rounds a sharp horizontal turn, going from 94.0 km/h to 46.0 km/h in the 17.0 s that it takes to round
Svetllana [295]

Answer:

1.41 m/s^2

Explanation:

First of all, let's convert the two speeds from km/h to m/s:

u = 94.0 km/h \cdot \frac{1000 m/km}{3600 s/h} = 26.1 m/s

v=46.0 km/h \cdot \frac{1000 m/km}{3600 s/h}=12.8 m/s

Now we find the centripetal acceleration which is given by

a_c=\frac{v^2}{r}

where

v = 12.8 m/s is the speed

r = 140 m is the radius of the curve

Substituting values, we find

a_c=\frac{(12.8 m/s)^2}{140 m}=1.17 m/s^2

we also have a tangential acceleration, which is given by

a_t = \frac{v-u}{t}

where

t = 17.0 s

Substituting values,

a_t=\frac{12.8 m/s-26.1 m/s}{17.0 s}=-0.78 m/s^2

The two components of the acceleration are perpendicular to each other, so we can find the resultant acceleration by using Pythagorean theorem:

a=\sqrt{a_c^2+a_t^2}=\sqrt{(1.17 m/s^2)+(-0.78 m/s^2)}=1.41 m/s^2

6 0
3 years ago
Read 2 more answers
S A block of mass M is connected to a spring of mass m and oscillates in simple harmonic motion on a frictionless, horizontal tr
Elina [12.6K]

The period of oscillation is T = 2 * pi * sqrt ( ( m2/3 + m1) / k )

<h3>What is period of oscillation?</h3>

This is the time in seconds it takes to complete one oscillation. where an oscillation is a repetitive to and fro motion. period if the inverse of frequency and both are basic when calculation motion in simple harmonic motion.

The period of oscillation is given as T

T = 2 * pi * sqrt ( m / k )

where

m = mass on this case mass of the spring will be inclusive to the mass of the block such that we have:

m1 = mass of the block

m2 = mass pf the spring

k = force constant of the spring

including the two masses to the period gives

T = 2 * pi * sqrt ( ( m2/3 + m1) / k )

Read more on period of oscillation here: brainly.com/question/22499336

#SPJ4

7 0
2 years ago
According to the law of conservation of momentum, objects will either stick together or bounce off of each other when they colli
Tanzania [10]
F - False.

The law of conservation of momentum states that the total momentum is conserved.
3 0
2 years ago
Waves transport
Brilliant_brown [7]

Answer:

d)energy

Explanation:

Waves can transfer energy over distance without moving matter the entire distance. For example, an ocean wave can travel many kilometers without the water itself moving many kilometers. The water moves up and down—a motion known as a disturbance. It is the disturbance that travels in a wave, transferring energy.

5 0
3 years ago
A 115 g hockey puck sent sliding over ice is stopped in 15.1 m by the frictional force on it from the ice.
Hoochie [10]

Answer:

(a) Ff = 0.128 N

(b μk = 0.1135

Explanation:

kinematic analysis

Because the hockey puck  moves with uniformly accelerated movement we apply the following formulas:

vf=v₀+a*t Formula (1)

d= v₀t+ (1/2)*a*t² Formula (2)

Where:  

d:displacement in meters (m)  

t : time in seconds (s)

v₀: initial speed in m/s  

vf: final speed in m/s  

a: acceleration in m/s

Calculation of the acceleration of the  hockey puck

We apply the Formula (1)

vf=v₀+a*t      v₀=5.8 m/s ,  vf=0

0=5.8+a*t

-5.8 = a*t

a= -5.8/t   Equation (1)

We replace a= -5.8/t in the Formula (2)

d= v₀*t+ (1/2)*a*t²   ,  d=15.1 m ,  v₀=5.8 m/s

15.1 = 5.8*t+ (1/2)*(-5.8/t)*t²  

15.1= 5.8*t-2.9*t

15.1= 2.9*t

t = 15.1 / 2.9

t= 5.2 s

We replace t= 5.2 s in the equation (1)

a= -5.8/5.2

a= -1.115 m/s²

(a) Calculation of the  frictional force (Ff)

We apply Newton's second law

∑F = m*a    Formula (3)

∑F : algebraic sum of the forces in Newton (N)

m : mass in kilograms (kg)

a : acceleration in meters over second square (m/s²)

Look at the free body diagram of the  hockey puck in the attached graphic

∑Fx = m*a     m= 115g * 10⁻³ Kg/g = 0.115g    ,  a= -1.12 m/s²

-Ff = 0.115*(-1.115)  We multiply by (-1 ) on both sides of the equation

Ff = 0.128 N

(b) Calculation of the coefficient of friction (μk)

N: Normal Force (N)

W=m*g= 0.115*9.8= 1.127 N : hockey puck  Weight

g: acceleration due to gravity =9.8 m/s²

∑Fy = 0

N-W=0

N = W

N =  1.127 N

μk = Ff/N

μk = 0.128/1.127

μk = 0.1135

8 0
3 years ago
Other questions:
  • 1) Arrange the following spectral regions in order of increasing energy: infrared, microwave, ultraviolet, visible.
    8·1 answer
  • What rule should be used to transform a table of data to represent the
    13·1 answer
  • What adaptation in frogs enables them to swim​
    13·2 answers
  • A 0.0434-m3 container is initially evacuated. Then, 4.19 g of water is placed in the container, and, after some time, all of the
    8·1 answer
  • As important as it is to plan ahead,sometimes you
    9·2 answers
  • The number that describes the main energy level of an electron in an atom is
    15·1 answer
  • Is the average speed related to the maximum or minimum speed of the person
    10·2 answers
  • Which of the following statements about radiation is true?
    8·1 answer
  • A small remote-control car with a mass of 1.65 kg moves at a constant speed of v = 12.0 m/s in a vertical circle inside a hollow
    13·1 answer
  • Based on the velocity-time graph given, the acceleration of the object is..
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!