Answer:
Q = 47.06 degrees
Explanation:
Given:
- The transmitted intensity I = 0.464 I_o
- Incident Intensity I = I_o
Find:
What angle should the principle axis make with respect to the incident polarization
Solution:
- The relation of transmitted Intensity I to to the incident intensity I_o on a plane paper with its principle axis is given by:
I = I_o * cos^2 (Q)
- Where Q is the angle between the Incident polarized Light and its angle with the principle axis. Hence, Using the relation given above:
Q = cos ^-1 (sqrt (I / I_o))
- Plug the values in:
Q = cos^-1 ( sqrt (0.464))
Q = cos^-1 (0.6811754546)
Q = 47.06 degrees
<h2>
Answers:</h2>
-The first direct detection of gravitational waves came in 2015
-The existence of gravitational waves is predicted by Einstein's general theory of relativity
-Gravitational waves carry energy away from their sources of emission
<h2>
Explanation:</h2>
Gravitational waves were discovered (theoretically) by Albert Einstein in 1916 and "observed" for the first time in direct form in 2015 (although the results were published in 2016).
These gravitational waves are fluctuations or disturbances of space-time produced by a massive accelerated body, modifying the distances and the dimensions of objects in an imperceptible way.
In this context, an excellent example is the system of two neutron stars that orbit high speeds, producing a deformation that propagates like a wave,<u> in the same way as when a stone is thrown into the water</u>. So, in this sense, gravitational waves carry energy away from their sources
.
Therefore, the correct options are D, E and F.
N2+3H2->2NH3
When 3 moles of H2 react, they produce 2 moles of NH3
3 moles of H2 have a mass of 2.02 g
2 moles of NH2 have a mass of 17.0 g
So when 2.02 g H2 react, they produce 17.0 g NH3
If 26.3g H2 react with a yield of 100%, we expect…
2.02g H2_____17.0gNH3
26.3g H2_____x=221gNH3
So now let’s calculate the percentage:
221gNH3_________100%
79.0gNH3_________x=79.0*100/221=35.7%
Answer:
53.8
Explanation: I plugged it on the formula