The time period of a simple pendulum depends upon its length and value of'g'at any place. The period of the pendulum of fixed length
The current is defined as the quantity of charge Q that passes through a certain location in a time

:

Using the data of the problem, we find:
When the motion of an object changes, the forces are unbalanced. Balanced forces are equal in size and opposite in direction. ... When the forces on an object are equal and in opposite directions, the forces are balanced, and there is no change in motion.
Answer:
she must increase the current by factor of 7
Explanation:
The magnetic field produced by a steady current flowing in a very long straight wire encircles the wire.In order to solve the question, we use this formula,
B= μo I/(2πr)
where,
'μo' represents permeability of free space i.e 4π*10-7 N/A2
B=magnetic field
I= current
r=radius
->When r= 1cm=> 0.01m
B1 = μo
/(2π x 0.01)
->when r=7cm =>0.07m
B2 = μo
/(2π x 0.07)
Now equating both of the magnetic fields, we have
B1= B2
μo
/(2π x 0.01)= μo
/(2π x 0.07)
/
= 0.01/0.07
/
= 1/ 7
Therefore, she must increase the current by factor of 7