1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anestetic [448]
3 years ago
12

(96 Points )A bus and a bicycle have a head-on collision. Compare the force of impact between the bus and the bicycle; compare t

he accelerations of the bus and bicycle.
Physics
1 answer:
lidiya [134]3 years ago
6 0

Answer:

Small acceleration for the bus and major for the bicycle

Explanation:

In a head-on collision of this type, i order to find force involve in a collision, one has to study the change in linear momentum of each object. Because Force s defined as the change of momentum with time.

Recall that momentum is the product of the mass of the object times its velocity. The mass of the bus (M) is much larger than that of the bicycle (m), and even if their speeds are similar, the momentum of the bus will be much larger than that of the bike due to this mass difference. We could assume an inelastic collision (where the two objects stay together after the collision),

The initial total momentum of the system (imagining that the bus is pointing to the right (positive convention), while the bike is pointing in the opposite (to the left), can be written as: Pi=Mv-mv (we are assuming that both vehicles go at the same speed for simplicity)

The final total momentum of the system that underwent an inelastic collision will be: P_f=(M+m)v_f

Therefore, since the mass M is much larger than mass m, the final momentum will be pretty similar to the initial momentum of the bus.

The change in momentum for the bus in the fraction of time of the collision will be almost unnoticeable for the bus (minimal change in its momentum, and therefore minimal acceleration accounting for the change).

For the bicycle, the change in momentum involves change in the direction of motion, (going to the left before the collision, and to the right afterwards) which will include a mayor acceleration backwards.

You might be interested in
Explain how do winds cause surface currents?
igor_vitrenko [27]

Answer:

As wind or an ocean current moves, the Earth spins underneath it. ... The Coriolis effect bends the direction of surface currents to the right in the Northern Hemisphere and left in the Southern Hemisphere.

Explanation:

The Coriolis effect causes winds and currents to form circular patterns.

8 0
3 years ago
Which of the following electrical components is a temporary electrical energy storage device?
7nadin3 [17]

Answer:

A capacitor

Explanation:

Because it can store electric energy when disconnected from its charging circuit. Commonly used in electronic devices to maintain power supply while batteries change.

Hope this helps! :)

6 0
3 years ago
Riders in a carnival ride stand with their backs against the wall of a circular room of diameter
Veseljchak [2.6K]

Answer:

option C

Explanation:

given,

diameter of circular room = 8 m

rotational velocity of the rider = 45 rev/min

                  = 45 \times \dfrac{2\pi}{60}

                  =4.712 rad/s

here in this case normal force is equal to centripetal force

N = m r ω²

N = m x 4 x 4.712²

N = 88.83m

frictional force = μ N

    = 88.83m x μ

now, for the body to not to slide

gravity force is equal to frictional force

m g = 88.83 m x μ

g = 88.83 x μ

9.8 = 88.83 x μ

 μ = 0.11

hence, the correct answer  is option C

6 0
3 years ago
An electron moves with a speed of 8.0×106m/s along the -z-axis. It enters a region where there is a uniform magnetic field B = (
Crazy boy [7]

Answer:

Acceleration, a=9.36\times 10^{18}\ m/s^2

Explanation:

It is given that,

Speed of electron, v=8\times 10^6\ m/s

Charge on an electron, q=1.6\times 10^{-19}\ C

Mass of electron, m=9.1\times 10^{-31}\ kg

Magnetic field, B=5.5i-3.7j

Magnitude, |B|=\sqrt{5.5^2+(-3.77)^2}=6.66\ T

Magnetic force is given by :

F=qvB

Also, F = ma

a=\dfrac{qvB}{m}

a=\dfrac{1.6\times 10^{-19}\times 8\times 10^6\times 6.66}{9.1\times 10^{-31}}

a=9.36\times 10^{18}\ m/s^2

So, the acceleration of the electron is 9.36\times 10^{18}\ m/s^2. Hence, this is the required solution.

5 0
3 years ago
A goldfish is capable of seeing which electromagnetic wave?
Leno4ka [110]

Answer:

D

Explanation:

they can see this along with many other fish.

6 0
3 years ago
Other questions:
  • In a football game a kicker attempts a field goal. The ball remains in contact with the kicker's foot for 0.0800 s, during which
    8·1 answer
  • A heavier car is always safer in a crash than a lighter car.
    6·1 answer
  • Object a and object b are both in motion when they collide with each other. They then continue in a new direction unaffected by
    11·1 answer
  • What speed must an electron have if its momentum is to be the same as that of an x-ray photon with a wavelength of 0.20 nm?
    10·1 answer
  • When driving at night switch to low-beams whenever you come within ___ ft of an oncoming vehicle.
    14·2 answers
  • What type of plant tissue is NOT part of the vascular bundle?
    8·2 answers
  • How much force would cause a 120 kg object to decelerate from a rate of 16m/s to 13 m/s in 5 seconds
    7·1 answer
  • Which is a compound machine?
    12·2 answers
  • White light containing the wavelengths between 420 and 720 nm traveling in the air falls on a thin layer n1 = 1.5 and a thicknes
    12·1 answer
  • Fast food meals are typically high in all except 1 fat 2 calories 3 sodium 4 fiber
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!