The Gay-Lussac's law or Amonton's law states that the pressure of a given amount of a gas is directly propotional to its temperature if its volume is kept constant .
P∝T
and
The Charles Law states that volume of given amount of gas at constant pressure is directly propotional to temperature.
V∝T
So, by Gay-Lussac's law if we increase the temperature the Pressure will increase and by Charles Law, if we increase the temperature the volume will increase.
Therefore, if the temperature of gas increases either the pressure of the gas, the volume of the gas, or both, will increase.
Hence,
Answer is option C
Answer:
The wavelength in vacuum is equal to 428.8 nm.
Explanation:
Given that,
The wavelength of light, 
The refractive index of glass, n = 1.51
We need to find the wavelength in vacuum. The relation between wavelength and refractive index is given by :

So, the wavelength in vacuum is equal to 428.8 nm.
Answer:
51.94°
Explanation:
= Unpolarized light
= Light after passing though second filter = 
Polarized light passing through first filter

Polarized light passing through second filter

The angle between the two filters is 51.94°
Electrical power, in watts = (voltage, in volts) x (current, in Amperes)
Answer:
5.42 m/s
Explanation:
At minimum speed, the tension in the bar will be 0 when the ball is at the top of the arc, so the only force is gravity pulling down.
Sum of forces towards the center of the circle:
∑F = ma
mg = m v²/r
v = √(gr)
v = √(9.8 m/s² × 3.00 m)
v = 5.42 m/s