Answer:
R=4.22*10⁴km
Explanation:
The tangential speed
of the geosynchronous satellite is given by:

Because
is the circumference length (the distance traveled) and T is the period (the interval of time).
Now, we know that the centripetal force of an object undergoing uniform circular motion is given by:

If we substitute the expression for
in this formula, we get:

Since the centripetal force is the gravitational force
between the satellite and the Earth, we know that:
![F_g=\frac{GMm}{R^{2}}\\\\\implies \frac{GMm}{R^{2}}=\frac{4m\pi ^{2}R}{T^{2}}\\\\R^{3}=\frac{GMT^{2}}{4\pi^{2}} \\\\R=\sqrt[3]{\frac{GMT^{2}}{4\pi^{2}} }](https://tex.z-dn.net/?f=F_g%3D%5Cfrac%7BGMm%7D%7BR%5E%7B2%7D%7D%5C%5C%5C%5C%5Cimplies%20%5Cfrac%7BGMm%7D%7BR%5E%7B2%7D%7D%3D%5Cfrac%7B4m%5Cpi%20%5E%7B2%7DR%7D%7BT%5E%7B2%7D%7D%5C%5C%5C%5CR%5E%7B3%7D%3D%5Cfrac%7BGMT%5E%7B2%7D%7D%7B4%5Cpi%5E%7B2%7D%7D%20%5C%5C%5C%5CR%3D%5Csqrt%5B3%5D%7B%5Cfrac%7BGMT%5E%7B2%7D%7D%7B4%5Cpi%5E%7B2%7D%7D%20%7D)
Where G is the gravitational constant (
) and M is the mass of the Earth (
). Since the period of the geosynchronous satellite is 24 hours (equivalent to 86400 seconds), we finally can compute the radius of the satellite:
![R=\sqrt[3]{\frac{(6.67*10^{-11}Nm^{2}/kg^{2})(5.97*10^{24}kg)(86400s)^{2}}{4\pi^{2}}}\\\\R=4.22*10^{7}m=4.22*10^{4}km](https://tex.z-dn.net/?f=R%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B%286.67%2A10%5E%7B-11%7DNm%5E%7B2%7D%2Fkg%5E%7B2%7D%29%285.97%2A10%5E%7B24%7Dkg%29%2886400s%29%5E%7B2%7D%7D%7B4%5Cpi%5E%7B2%7D%7D%7D%5C%5C%5C%5CR%3D4.22%2A10%5E%7B7%7Dm%3D4.22%2A10%5E%7B4%7Dkm)
This means that the radius of the orbit of a geosynchronous satellite that circles the earth is 4.22*10⁴km.
Displacement is a vector quantity. So, you incorporate the vector calculations when you try to determine the resultant vector. This is the shortest path from the starting point to the endpoint. If they are moving on one axis only, you use sign conventions. For motions moving to the left, use the negative sign. If it's moving to the right, then use the positive sign. Now, it the object moves 2 km to the left, and 2 km also to the right, the displacement is zero.
Displacement = 2 km - 2km = 0
Generally, the equation is:
<span>Displacement = Distance of motion to the right - Distance of motion to the left</span>
Answer:

So then the answer for this case would be 29906 cal but we need to convert this into KJ and we know that 1 cal = 4.184 J and if we convert we got:

Explanation:
For this case we know the mass of the water given :

And we know that the initial temperature for this water is
.
We want to cool this water to the human body temperature 
Since the temperatures given are not near to 0C (fusion point) or 100C (the boling point) we don't need to use latent heat, then the only heat involved for this case is the sensible heat given by:

Where
represent the specific heat for the water and this value from tables we know that
for the water.
So then we have everything in order to replace into the formula of sensible heat and we got:

So then the answer for this case would be 29906 cal but we need to convert this into KJ and we know that 1 cal = 4.184 J and if we convert we got:

The measure of how much salt will dissolve into 100g of water is _solution_ .
Answer:
(a) 1.21 m/s
(b) 2303.33 J, 152.27 J
Explanation:
m1 = 95 kg, u1 = - 3.750 m/s, m2 = 113 kg, u2 = 5.38 m/s
(a) Let their velocity after striking is v.
By use of conservation of momentum
Momentum before collision = momentum after collision
m1 x u1 + m2 x u2 = (m1 + m2) x v
- 95 x 3.75 + 113 x 5.38 = (95 + 113) x v
v = ( - 356.25 + 607.94) / 208 = 1.21 m /s
(b) Kinetic energy before collision = 1/2 m1 x u1^2 + 1/2 m2 x u2^2
= 0.5 ( 95 x 3.750 x 3.750 + 113 x 5.38 x 5.38)
= 0.5 (1335.94 + 3270.7) = 2303.33 J
Kinetic energy after collision = 1/2 (m1 + m2) v^2
= 0.5 (95 + 113) x 1.21 x 1.21 = 152.27 J