Answer:
d=9.462×10^15 meters
Explanation:
<u>Relation between distance, temps and velocity:</u>
d=v*t
t=1year*(365days/1year)*/(24hours/1day)*(3600s/1h)=31536000s
So:
1 light year=d=3*10^8m/s*3.154*10^7s=9.462×10^15 meters
Answer:
Area=1.5(1.5)=2.25m^2
Force of gravity=10N
\begin{gathered}\\ \sf\longmapsto Pressure=\dfrac{Force}{Area}\end{gathered}
⟼Pressure=
Area
Force
\begin{gathered}\\ \sf\longmapsto Pressure=\dfrac{10}{2.25}\end{gathered}
⟼Pressure=
2.25
10
\begin{gathered}\\ \sf\longmapsto Pressure=4.4Pa\end{gathered}
⟼Pressure=4.4Pa
Answer:
g = 8.61 m/s²
Explanation:
distance of the International Space Station form earth is 200 Km
mass of the object = 1 Kg
acceleration due to gravity on earth = 9.8 m/s²
mass of earth = 5.972 x 10²⁴ Kg
acceleration due to gravity = ?
r = 6400 + 200 = 6800 Km = 6.8 x 10⁶ n
using formula


g = 8.61 m/s²
Answer:
force becomes one - ninth
Explanation:
According to Coulomb's law in electrostatics, two charges can exert a force of attraction or repulsion on each other which is directly proportional to the product of two charges and inversely proportional to the square of distance between them.
Here both the charges remains same but the distance is variable.
So, we can say that
.... (1)
Where d be the distance between the tow charges
As the distance between two charges increases by factor of three, let the new force be F'.
.... (2)
Divide equation (2) by equation (1), we get


Thus, the force becomes one - ninth times the initial force.
Answer:
The mass of the object involved and the value of the gravitational acceleration
Explanation:
- Gravitational potential energy is defined as the energy possessed by an object in a gravitational field due to its position with respect to the ground:

where m is the mass of the object, g is the gravitational acceleration and h is the heigth of the object with respect to the ground.
- Elastic potential energy is defined as the energy possessed by an elastic object and it is given as:

where k is the spring constant of the elastic object, while x is the compression/stretching of the spring with respect to the equilibrium position.
As we can see from the equations, both types of energy depends on the relative position of the object/end of the spring with respect to a certain reference position (h in the first formula, x in the second formula), but gravitational potential energy also depends on m (the mass) and g (the gravitational acceleration) while the elastic energy does not.