Answer:
P = 5sin(880πt)
Explanation:
We write the pressure in the form P = Asin2πft where A = amplitude of pressure, f = frequency of vibration and t = time.
Now, striking the middle-A tuning fork with a force that produces a maximum pressure of 5 pascals implies A = 5 Pa.
Also, the frequency of vibration is 440 hertz. So, f = 440Hz
Thus, P = Asin2πft
P = 5sin2π(440)t
P = 5sin(880πt)
To find the force we use the formula,
F = ma , where m is mass and a acceleration
Using the formula,
F = ma
F = 0.42 x 14.8
F = 6.216 N / 6.22 N
Hope you liked the answer !
A) use v=u+at for both
First section, v=27, u=0, a=2.4. You should get 11seconds.
Second section, v=0, u=27, a=-1.3. You should get 21seconds.
This means that the total time is 22seconds.
b) You can either use s=ut+0.5at^2 or v^2=u^2+2as. Personally, I would use the second one as you are not relying on your previous answer.
First section, v=27, u=0, a=2.4. You should get 152m.
Second section, v=0, u=27, a=-1.3. You should get 280m.
This makes your overall displacement 432m.
Answer:
The low side pressure of an A/C system losing vacuum and the pressure rising above zero indicates that there is too much refrigerant in the system.
Explanation:
Considering an A/C system, the condenser fan might be malfunctioning if the low side pressure of the air conditioner is excessive. On the other hand, it's also conceivable that the system has been overcharged with refrigerant.
Stated the scenario that the refrigerant of the system was being recovered, it is an indication that the system is merely overcharged. Even with the engine off, you will notice high pressures.
Either too much oil is present, or there is too much refrigerant in the air conditioning system. In either case, until you let some of that pressure out—ideally, a mechanic should do this—the issue won't go away on its own.
To know more about the pressure scenarios related to AC systems, refer to:
brainly.com/question/17072827
#SPJ4
Explanation:
Gravity is the force of attraction between two objects. It depends upon the mass of the objects and the distance between the objects. Mathematically, the force of gravity is given by :

Where
G is the universal gravitational constant
are masses
d is the distance between two masses
So, statement (2) describes gravity "Gravity is the force of attraction between two objects; it is dependent upon the mass of the objects and the distance between the objects".