Answer:
The hottest temperature is 
Explanation:
From the question we are given



Generally converting
to Fahrenheit

=> 
=> 
Converting
to Fahrenheit

=> 
=>
Now comparing the temperature in Fahrenheit we see that
is the hottest
Answer:0.58 m
Explanation:
The initial velocity of the ball is u = 2.0 m/s
The height of the table is, h = 1.0 m
The ball falls in vertical direction under acceleration due to gravity.
Time taken for ball to hit the floor:
h= ut + 0.5gt² ( from the equation of motion)
1.0 m=2.0 m/s × t+0.5 × 9.8 m/s²× t²
Solving this for t,
t = 0.29 s ( we have neglected the negative value of t)
In the same time, the ball would cover a horizontal distance of :
s = u t
⇒s = 2.0 m/s×0.29 s = 0.58 m
Thus, the landing spot is 0.58 m away from the table.
Answer:
51 Ω.
Explanation:
We'll begin by calculating the equivalent resistance of R₁ and R₃. This can be obtained as follow:
Resistor 1 (R₁) = 40 Ω
Resistor 3 (R₃) = 70.8 Ω
Equivalent Resistance of R₁ and R₃ (R₁ₙ₃) =?
Since the two resistors are in parallel connection, their equivalent can be obtained as follow:
R₁ₙ₃ = R₁ × R₃ / R₁ + R₃
R₁ₙ₃ = 40 × 70.8 / 40 + 70.8
R₁ₙ₃ = 2832 / 110.8
R₁ₙ₃ = 25.6 Ω
Finally, we shall determine the equivalent resistance of the group. This can be obtained as follow:
Equivalent Resistance of R₁ and R₃ (R₁ₙ₃) = 25.6 Ω
Resistor 2 (R₂) = 25.4 Ω
Equivalent Resistance (Rₑq) =?
Rₑq = R₁ₙ₃ + R₂ (series connection)
Rₑq = 25.6 + 25.4
Rₑq = 51 Ω
Therefore, the equivalent resistance of the group is 51 Ω.
Answer:
Tension in the supporting cable is = 4,866 N ≅4.9 KN
Explanation:
First of all, we need to understand that tension is a force, so the motion law
F = Ma applies perfectly.
From Newtons third law of motion, action and reaction are equal and opposite. This means that the force experienced by the elevator, is equal to the tension experienced by the spring.
Parameters given:
Mass of load = 1650 kg
Acceleration of load = ?
The acceleration of the load can be obtained by diving the change in velocity by the time taken. But we need to know the time taken for the motion to 41 m.
Time taken = distance covered / velocity
=
= 3.73 seconds
∴Acceleration = ( initial velocity - final velocity )/ time taken
Note: Final velocity is = 0 since the body came to a rest.
Acceleration =
= 2.95m/
Force acting on the cable = mass of elevator × acceleration of elevator
= 1650 × 2.95 = 4869.5 kg ≅ 4.9 KN