Answer:
a) t = 1.75 s
b) x = 31.5 m
Explanation:
a) The time at which Tom should drop the net can be found using the following equation:

Where:
: is the final height = 0
y₀: is the initial height = 15 m
g: is the gravity = 9.81 m/s²
: is the initial vertical velocity of the net = 0 (it is dropped from rest)


Hence, Tom should drop the net at 1.75 s before Jerry is under the bridge.
b) We can find the distance at which is Jerry when Tom drops the net as follows:


Then, Jerry is at 31.5 meters from the bridge when Jerry drops the net.
I hope it helps you!
Answer:
a)
, b) 
Explanation:
a) The potential energy is:



b) Maximum final speed:

The final speed is:


Answer:
In combination, the equatorial bulge and the effects of the surface centrifugal force due to rotation mean that sea-level gravity increases from about 9.780 m/s2 at the Equator to about 9.832 m/s2 at the poles, so an object will weigh approximately 0.5% more at the poles than at the Equator.
Liquids<span> are not </span>packed<span> as tightly as </span>solids<span>. And gases are very loosely </span>packed<span>. The spacing of the molecules enables </span>sound<span> to travel much faster through a </span>solid<span> than a gas. </span>Sound<span> travels about four times faster and farther in water than it does in air.</span>