Sin(2θ)+sin(<span>θ)=0
use double angle formula: sin(2</span>θ)=2sin(θ)cos(<span>θ).
=>
2sin(</span>θ)cos(θ)+sin(<span>θ)=0
factor out sin(</span><span>θ)
sin(</span>θ)(2cos(<span>θ)+1)=0
by the zero product property,
sin(</span>θ)=0 ...........(a) or
(2cos(<span>θ)+1)=0.....(b)
Solution to (a): </span>θ=k(π<span>)
solution to (b): </span>θ=(2k+1)(π)+/-(π<span>)/3
for k=integer
For [0,2</span>π<span>), this translates to:
{0, 2</span>π/3,π,4π/3}
Error// Error// Error// Error// Error// Error//
Answer:
1). 183
2). 83
3). 353
4). -2652
5). 59
6). 510
7). -293
8). 79
9). 78
10). 87
Step-by-step explanation:
Considering order of operation, parenthesis must be simplified first.
The solutions to the given questions are shown below;










What are the values of mode and median in the following set of numbers? 1,3,3,6,6,5,4,3,1,1,2 Mode: 1, 2, Median: 2 Mode: 1,3, M
AURORKA [14]
<h3><u>given</u><u>:</u></h3>
<u>
</u>
<h3><u>to</u><u> </u><u>find</u><u>:</u></h3>
the mode and median of the given numbers set.
<h3><u>solution</u><u>:</u></h3><h3><u>mode</u><u>:</u></h3>
the most frequently occurred number.

<h3><u>median</u><u>:</u></h3>
first arrange all the numbers in either decending or ascending order, then find the number in the middle.


<u>hence</u><u>,</u><u> </u><u>the</u><u> </u><u>median</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>following</u><u> </u><u>data</u><u> </u><u>set</u><u> </u><u>is</u><u> </u><u>3</u><u> </u><u>and</u><u> </u><u>the</u><u> </u><u>mode</u><u> </u><u>is</u><u> </u><u>1</u><u> </u><u>and</u><u> </u><u>3</u>
Answer:X=3
Step-by-step explanation: Option B