T<span>his is a straightforward question related to the surface energy of the droplet. </span>
<span>You know the surface area of a sphere is 4π r² and its volume is (4/3) π r³. </span>
<span>With a diameter of 1.4 mm you have an original droplet with a radius of 0.7 mm so the surface area is roughly 6.16 mm² (0.00000616 m²) and the volume is roughly 1.438 mm³. </span>
<span>The total surface energy of the original droplet is 0.00000616 * 72 ~ 0.00044 mJ </span>
<span>The five smaller droplets need to have the same volume as the original. Therefore </span>
<span>5 V = 1.438 mm³ so the volume of one of the smaller spheres is 1.438/5 = 0.287 mm³. </span>
<span>Since this smaller volume still has the volume (4/3) π r³ then r = cube_root(0.287/(4/3) π) = cube_root(4.39) = 0.4 mm. </span>
<span>Each of the smaller droplets has a surface area of 4π r² = 2 mm² or 0.0000002 m². </span>
<span>The surface energy of the 5 smaller droplets is then 5 * 0.000002 * 72.0 = 0.00072 mJ </span>
<span>From this radius the surface energy of all smaller droplets is 0.00072 and the difference in energy is 0.00072- 0.00044 mJ = 0.00028 mJ. </span>
<span>Therefore you need roughly 0.00028 mJ or 0.28 µJ of energy to change a spherical droplet of water of diameter 1.4 mm into 5 identical smaller droplets. </span>
Answer:The first method to determine the chemical composition of a substance in space was using light. By determining red shift in the observed spectrum of light they could determine the elements they were observing
Explanation:
Explanation:
The resonance compounds are compounds that have the same position of the atoms (same quantity and elements) but the position of the electrons arround them is different in each resonance compound.
In reality, the compound switches between all the resonance structures it has.
One example of resonance Lewis structures is the Ozone's as can be seen in the figure.