Answer:
a. Polar
b. Polar
c. Non-polar
d. Non-polar
Explanation:
a.
, hydronium cation contains a positive charge. Just as any other ion, it is polar, as it has a net charge.
b.
has the same shape as water. There are two lone pairs on sulfur atom which produce an overall dipole moment in this molecule, the bent structure is polar.
c.
is non-polar, as the central atom, phosphorus, doesn't contain any lone pairs, all the dipole moments cancel out: two dipole moments in the vertical plane, P-Cl, and three P-Cl dipoles in the horizontal plane within a trigonal bipyramidal shape.
d.
is non-polar, since it's a tetrahedral molecule with no lone pairs on carbon atom, all four C-F dipole moments cancel out to yield a net 0 dipole moment.
Freeze drying<span> (or lyophilization) removes water from the ice cream by lowering the </span>air pressure<span> to a point where ice sublimates from a </span>solid<span> to a </span>gas<span>. The ice cream is placed in a </span>vacuum chamber<span> and frozen until the water </span>crystallizes<span>. The air pressure is lowered, creating a partial vacuum, forcing air out of the chamber; next heat is applied, </span>sublimating<span> the ice; finally a freezing coil traps the vaporized water. This process continues for hours, resulting in a freeze-dried ice cream slice. </span>
Answer:
4Fe + 3O₂ → 2Fe₂O₃
Explanation:
Fe → ²⁺
O → ²⁻
But Iron III is Fe³⁺
So we have Fe³⁺ and O²⁻, the formula for the oxide must be Fe₂O₃ so the equation can be:
4Fe + 3O₂ → 2Fe₂O₃
Answer:
trigonal planar
Explanation:
Tri=three, three-dimensional arrangement of the atoms that constitute a molecule.
so this is right answer
For reasons that are unclear, no eukaryotic enzymes can break the triple bond of N2. The reduction of N2 to NH3 (nitrogen fixation) is limited to prokaryotes and is catalysed by nitrogenase. Since most of the nitrogen entering the biosphere (around 100 million metric tonnes of N2 per annum) does so through nitrogenase activity (lightning contributes about 10%), those plants that associate with nitrogen-fixing bacteria have a significant selective advantage under conditions of limiting nitrogen.