1. 3 elements, Mg: 1, S: 1, O: 4
2. 3 elements, Li: 3, P: 1, O: 4
3. 3 elements, H: 2, S: 1, O: 4
1. KOH
2. AlOH
3. AlSO4
Answer:
2 Atm; 2.016 g
Explanation:
Changing the volume without changing the temperature or mass only changes the pressure. Volume and pressure are inversely proportional so halving the volume will double the pressure.
P = 1 Atm, T = 0 °C are "standard" temperature and pressure (STP). The volume of 1 mole of gas is 22.4 L under these conditions. That means the amount of hydrogen gas in the cylinder is 1 mole, so has a mass of 2.016 g.
After the volume reduction, the pressure is 2 Atm, and the mass remains 2.016 g.
Answer:
37 mmol of acetate need to add to this solution.
Explanation:
Acetic acid is an weak acid. According to Henderson-Hasselbalch equation for a buffer consist of weak acid (acetic acid) and its conjugate base (acetate)-
![pH=pK_{a}(acetic acid)+log[\frac{mmol of CH_{3}COO^{-}}{mmol of CH_{3}COOH }]](https://tex.z-dn.net/?f=pH%3DpK_%7Ba%7D%28acetic%20acid%29%2Blog%5B%5Cfrac%7Bmmol%20of%20CH_%7B3%7DCOO%5E%7B-%7D%7D%7Bmmol%20of%20CH_%7B3%7DCOOH%20%7D%5D)
Here pH is 5.31,
(acetic acid) is 4.74 and number of mmol of acetic acid is 10 mmol.
Plug in all the values in the above equation:
![5.31=4.74+log[\frac{mmol of CH_{3}COO^{-}}{10}]](https://tex.z-dn.net/?f=5.31%3D4.74%2Blog%5B%5Cfrac%7Bmmol%20of%20CH_%7B3%7DCOO%5E%7B-%7D%7D%7B10%7D%5D)
or, mmol of
= 37
So 37 mmol of acetate need to add to this solution.
Because society has shaped our mind on what we shall think about things