Answer:
d=1.49×1011m
Explanation:
Velocity is defined as the rate of travel, and can be found using the distance formula.
velocity=distancetime
Rearranging this formula we can solve for distance given velocity and time of travel.
d=vt
We are given velocity and time, and so can solve for distance, but if we plug in the values given;
d=(3.00×108m/s)(8.3minutes)
We can see that the units do not match up. Since seconds are the SI unit for time, we will need to convert 8.3 minutes to seconds.
t=(8.3minutes)(60seconds/minute)=(498s)
Now our units work out and we can solve for distance.
= 15.85
Answer:
W = 7.06 J
Explanation:
From the given information the spring constant 'k' can be calculated using the Hooke's Law.

Now, using this spring constant the additional work required by F to stretch the spring can be found.
The work energy theorem tells us that the work done on the spring is equal to the change in the energy. Therefore,
![W = U_2 - U_1\\W = \frac{1}{2}kx_2^2 - \frac{1}{2}kx_1^2 = \frac{1}{2}(275.13)[0.29^2 - 0.18^2] = 7.06~J](https://tex.z-dn.net/?f=W%20%3D%20U_2%20-%20U_1%5C%5CW%20%3D%20%5Cfrac%7B1%7D%7B2%7Dkx_2%5E2%20-%20%5Cfrac%7B1%7D%7B2%7Dkx_1%5E2%20%3D%20%5Cfrac%7B1%7D%7B2%7D%28275.13%29%5B0.29%5E2%20-%200.18%5E2%5D%20%3D%207.06~J)
Answer:
<h3>Can you please provide the choices? For now this is all I can give you.</h3>
Explanation:
In thermodynamics, an adiabatic process is a type of thermodynamic process which occurs without transferring heat or mass between the system and its surroundings.Unlike an isothermal process, an adiabatic process transfers energy to the surroundings only as work. It also conceptually supports the theory used to explain the first law of thermodynamics and is therefore a key thermodynamic concept.