Answer:
Thus there was no accumulation of ions on the nails, as the dissolved gases were already removed, hence no rust formation. In test tube C, a chemical was added to absorb the water vapour. We know that rust formation takes place when a metal is exposed to water vapour.
Explanation:i hope u have a wonderful night and stays safe
Answer:
Ca(OH)2 will not precipitate because Q<Ksp
Explanation:
Ksp for Ca(OH)2 has already been stated in the question as 8.0 x 10-8mol2dm-6
The value of the reaction quotient depends heavily on the concentration of the reactants. As the initial concentration of the calcium carbide decreases considerably, the reaction quotient decreases until Q<Ksp hence the Ca(OH)2 will not precipitate from solution.
The reaction equation is:
CaC₂(s) + H₂O ⇒ Ca(OH)₂ + C₂H₂
From
Ca(OH)2= Ca2+ + 2OH-
Concentration of solution= 0.064×1/64= 1×10-3
Since [Ca2+] = 1×10-3
[OH-]= (2×10-3)^2= 4×10^-6
Hence Q= 4×10^-9
This is less than the Ksp hence the answer.
Answer:
The molarity of the solution increases.
Explanation:
Molarity is the measure of the concentration of the solute in the solution. In this case, the solvent is the sugar solution and the solute is the sugar.
If sugar is ADDED to the already sugary solution, then there would be more sugar. Therefore, the sugar (solute) would increase in number.
This means that the answer is the third choice: The molarity of the solution increases.
The answer would not be the first or second choice because there isn't anything in the question that implies water. It just says sugar solution.
The answer is not the last choice because the sugar concentration does not decrease after you have added more sugar to it. It increases.
Answer:
i would have to add and divide
Explanation:
adding and dividing will get you the answer
Answer:
The volume increases because the temperature increases and is 2.98L
Explanation:
Charles's law states that the volume of a gas is directely proportional to its temperature. That means if a gas is heated, its volume will increase and vice versa. The equation is:
V₁/T₁ = V₂/T₂
<em>Where V is volume and T is absolute temperature of 1, initial state, and 2, final state of the gas.</em>
In the problem, the gas is heated, from 53.00°C (53.00 + 273.15 = 326.15K) to 139.00°C (139.00 + 273.15 = 412.15K).
Replacing in the Charles's law equation:
2.36L / 326.15K= V₂/412.15K
<h3>2.98L = V₂</h3>
<em />