Hello!
We have the following data:
Area (
A) = 50 square feet
Mass (
m) = 8.5 ounces
Density (
d) = 2.70 g/cm³
Volume (
V) = ?
Thickness (
T) =? (in mm)
To move on, we must transform the area of 50 ft² in cm², let's see:
1 ft² ------- 929,0304 cm²
50 ft² -----
A

In the same way, we will convert the mass of 8.5 oz in grams, see:
1 oz -------- 28,3495 g
8,5 oz -------
m

Knowing that the density is 2.70 g/cm³ and the mass is 240.97075 g, we will find the volume, applying the data in the density formula we have:



The statement wants to find the thickness of the packaging, for this we have some important data, such as: V (volume) = 89,25 cm³ and Area (A) = 46451,52 cm² and T (thickness) =? (in mm)
In the calculations of Costs in Surface Treatment of a part within the flat geometry, we will use the following formula:





We will convert to millimeters, going through a decimal place on the right

Hope this helps! :))
Bohr's theory states that the motion of the electron (particle) around the nucleus is very much similar to motion of the planets around the sun in the solar system. Both in the mathematical and physical sense.
The Bohr's Atomic theory only explains the motion of the electrons in discrete atomic orbitals that are predicted by the Bohr's equation.
It strictly implies that the electron only exists in these discreet orbitals and fails to explain anything about the nature of the electron in between the discrete orbitals.
The modern atomic theory does not share this limitation as it does not impose the electron to only occupy the discrete orbitals and neither does it impose particle nature upon the electron.
In the modern theory does not focus on describing the motion of the electron around the orbital but rather the probability of finding an electron around the nucleus. The modern atomic orbitals or electron clouds are the regions in which the probability of finding the electron is the highest when the wave function collapses. The Schrödinger's wave equation explains the evolution of the wave function in time. Hence enabling us to predict the future possible locations of the electron but never the exact location as that is impossible due to the Heisenberg's Uncertainty principle.
Learn more about Bohr's atomic orbitals by clicking here :
brainly.com/question/11872378
#SPJ4
Answer:

Explanation:
Hello,
In this case, the undergoing chemical reaction is:

Thus, we proceed to compute the reacting moles of Pb(NO3)2 and KI, by using the given concentrations and densities and molar masses which are 331.2 g/mol and 166 g/mol respectively:

Next, the 0.0464 moles of Pb(NO3)2 will consume the following moles of KI (consider their 1:2 molar ratio):

Hence, as only 0.0789 moles of KI are available, KI is the limiting reactant, therefore the formed grams of PbI2, considering its molar mass of 461.01 g/mol and 2:1 molar ratio, are:

Best regards.
Answer:
In chemistry, a group is a vertical column in the periodic table of the chemical elements. ... Each element within a group has similar physical or chemical properties because of its atom's outermost electron shell (most chemical properties are dominated by the orbital location of the outermost electron).
Alright! Here are the answers:
1. C. Fluorine is more reactive than nitrogen because fluorine needs only one electron to fill its outermost shell.
2. Aluminum (Al)