1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MAXImum [283]
3 years ago
9

Value 1: 45.58g

Chemistry
1 answer:
Rama09 [41]3 years ago
7 0

Answer:

<h2>Percentage error is a measurement of the discrepancy between an observed and a true, or accepted value .</h2>

Explanation:

<h3 />
You might be interested in
Determine the empirical and molecular formula for chrysotile asbestos. Chrysotile has the following percent composition: 28.03%
nlexa [21]

<u>Answer:</u> The empirical and molecular formula of chrysotile is Mg_3Si_2H_3O_4 and Mg_6Si_4H_6O_{16}

<u>Explanation:</u>

We are given:

Percentage of Mg = 28.03 %

Percentage of Si = 21.60 %

Percentage of H = 1.16 %

Percentage of O = 49.21 %

Let the mass of compound be 100 g. So, percentages given are taken as mass.

Mass of Mg = 28.03 g

Mass of Si = 21.60 g

Mass of H = 1.16 g

Mass of O = 49.21 g

To formulate the empirical formula, we need to follow some steps:

  • <u>Step 1:</u> Converting the given masses into moles.

Moles of Magnesium = \frac{\text{Given mass of Magnesium}}{\text{Molar mass of Magnesium}}=\frac{28.03g}{24g/mole}=1.17moles

Moles of Silicon = \frac{\text{Given mass of Silicon}}{\text{Molar mass of Silicon}}=\frac{21.06g}{28g/mole}=0.752moles

Moles of Hydrogen = \frac{\text{Given mass of Hydrogen}}{\text{Molar mass of Hydrogen}}=\frac{1.16g}{1g/mole}=1.16moles

Moles of Oxygen = \frac{\text{Given mass of oxygen}}{\text{Molar mass of oxygen}}=\frac{49.21g}{16g/mole}=3.07moles

  • <u>Step 2:</u> Calculating the mole ratio of the given elements.

For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 0.752 moles.

For Magnesium = \frac{1.17}{0.752}=1.5

For Silicon = \frac{0.752}{0.752}=1

For Hydrogen = \frac{1.16}{0.752}=1.5

For Oxygen = \frac{3.07}{0.485}=4.08\approx 4

To convert the mole ratios into whole numbers, we multiply individual mole ratios by 2

Mole ratio of Magnesium = (2 × 1.5) = 3

Mole ratio of Silicon = (2 × 1) = 2

Mole ratio of Hydrogen = (2 × 1.5) = 3

Mole ratio of Oxygen = (2 × 4) = 8

  • <u>Step 3:</u> Taking the mole ratio as their subscripts.

The ratio of Mg : Si : H : O = 3 : 2 : 3 : 8

The empirical formula for the given compound is Mg_3Si_2H_3O_8

For determining the molecular formula, we need to determine the valency which is multiplied by each element to get the molecular formula.

The equation used to calculate the valency is :

n=\frac{\text{Molecular mass}}{\text{Empirical mass}}

We are given:

Mass of molecular formula = 520.8 g/mol

Mass of empirical formula = [(24 × 3) + (28 × 2) + (1 × 3) + (16 × 8)] = 259 g/mol

Putting values in above equation, we get:

n=\frac{520.8g/mol}{259g/mol}=2

Multiplying this valency by the subscript of every element of empirical formula, we get:

Mg_{(3\times 2)}Si_{(2\times 2)}H_{(3\times 2)}O_{(8\times 2)}=Mg_6Si_4H_6O_{16}

Hence, the empirical and molecular formula of chrysotile is Mg_3Si_2H_3O_4 and Mg_6Si_4H_6O_{16}

5 0
3 years ago
To show the electron configuration for an atom, when would it be better to use an orbital notation than to use a written configu
Kisachek [45]
The answer is: when the aim is to show electron distributions in shells

An orbital notation is more appropriate if you want to show how the electrons of an atom are distributed in each subshell. This is because there are some atoms that have special electronic configurations that aren't obvious in just written configurations.
8 0
3 years ago
Read 2 more answers
1. The pressure of a gas is 100.0 kPa and its volume is 500.0 ml. If the volume increases to 1,000.0 ml, what is the new pressur
marta [7]

Answer:

1) The new pressure of the gas is 500 kilopascals.

2) The final volume is 1.44 liters.

3) Volume will decrease by approximately 67 %.

4) The Boyle's Laws deals with pressures and volumes.

Explanation:

1) From the Equation of State for Ideal Gases we construct the following relationship:

\frac{P_{2}}{P_{1}} = \frac{V_{1}}{V_{2}} (1)

Where:

P_{1}, P_{2} - Initial and final pressure, measured in kPa.

V_{1}, V_{2} - Initial and final pressure, measured in mililiters.

If we know that P_{1} = 100\,kPa, V_{1} = 500\,mL and V_{2} = 1000\,mL, then the new pressure of the gas is:

P_{2} = P_{1}\cdot \left(\frac{V_{1}}{V_{2}} \right)

P_{2} = 500\,kPa

The new pressure of the gas is 500 kilopascals.

2) Let suppose that gas experiments an isothermal process. From the Equation of State for Ideal Gases we construct the following relationship:

\frac{P_{2}}{P_{1}} = \frac{V_{1}}{V_{2}} (1)

Where:

P_{1}, P_{2} - Initial and final pressure, measured in kPa.

V_{1}, V_{2} - Initial and final pressure, measured in mililiters.

If we know that V_{1} = 3.60\,L, P_{1} = 10\,kPa and P_{2} = 25\,kPa then the new volume of the gas is:

V_{2} = V_{1}\cdot \left(\frac{P_{1}}{P_{2}} \right)

V_{2} = 1.44\,L

The final volume is 1.44 liters.

3) From the Equation of State for Ideal Gases we construct the following relationship:

\frac{P_{2}}{P_{1}} = \frac{V_{1}}{V_{2}} (1)

Where:

P_{1}, P_{2} - Initial and final pressure, measured in kPa.

V_{1}, V_{2} - Initial and final pressure, measured in mililiters.

If we know that \frac{P_{2}}{P_{1}} = 3, then the volume ratio is:

\frac{V_{1}}{V_{2}} = 3

\frac{V_{2}}{V_{1}} = \frac{1}{3}

Volume will decrease by approximately 67 %.

4) The Boyle's Laws deals with pressures and volumes.

8 0
3 years ago
What does the term hospitality mean to you? Give a definition for hospitality.​
antiseptic1488 [7]

Answer:

relating to or denoting the business of entertaining clients, conference delegates, or other official visitors.

3 0
3 years ago
Read 2 more answers
Which of the following is true about the elements on the Periodic Table? There may be 1 or more correct answers.
nlexa [21]

Answer: 1. Block

2. True ( I'm unsure. He arranged it according to mass, but he is credited for the periodic table)

3. Noble gasses

4. technetium

5. Alkaline earth metals

6. Number of protons

7. False

8. Not true: generally decreases as atomic number increases within a period

9. Argon

10. Four

11. False

12. False

Explanation:

4 0
3 years ago
Other questions:
  • A student dissolves of sodium hydroxide in of water in a well-insulated open cup. He that observes the temperature of the water
    9·1 answer
  • All of the following are nonrenewable energy sources EXCEPT
    10·2 answers
  • What type of solid has the highest melting point?
    10·2 answers
  • What does CH4 stand for
    8·2 answers
  • Calcium oxide (CaO), an important ingredient in cement, is produced by decomposing calcium carbonate (CaCO3) at high temperature
    9·1 answer
  • What is the molecular formula of a compound whose molar mass is 88.0 and whose percent composition is 54.5% carbon, 9.1% hydroge
    13·1 answer
  • Please help me thanks so much....I’ll mark you?!?!:))))
    6·1 answer
  • An aqueous solution that has a hydrogen ion concentration of 1.0 x 10^-8 mole per liter has a pH of
    12·1 answer
  • Each day one astronaut exhales about 448 L of carbon dioxide. how many grams of LiOH is needed to remvoe this much carboon dioxi
    10·1 answer
  • Why is there a discrepancy between a heat of reaction ob-tained from calorimetry and one obtained from bond energies?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!