In order to maintain neutrality, the negatively charged ions in the salt bridge will migrate into the anodic half-cell. A similar (but reversed) situation is found in the cathodic cell.
<h3>
What purpose does a salt bridge serve in an oxidation process?</h3>
Anions (negatively charged particles) are added to the solution of the oxidation half of the cell by the salt bridge, and cations (positively charged particles) are added to the solution of the reduction half of the reaction.
<h3>
What purpose does the salt bridge serve in a galvanic cell?</h3>
For instance, KCl, AgNO3, etc. In a galvanic cell, such as a voltaic cell or Daniel cell, salt bridges are typically used. A salt bridge's primary job is to assist in preserving the electrical neutrality of the internal circuit. Additionally, it aids in keeping the cell's response from reaching equilibrium.
Learn more about Salt bridge here:-
brainly.com/question/20345420
#SPJ4
Answer:
4.20 moles NF₃
Explanation:
To convert between moles of N₂ and NF₃, you need to use the mole-to-mole ratio from the balanced equation. This ratio consists of the coefficients of both molecules from the balanced equation. The molecule you are converting from (N₂) should be in the denominator of the ratio because this allows for the cancellation of units. The final answer should have 3 sig figs because the given value (2.10 moles) has 3 sig figs.
1 N₂ + 3 F₂ ---> 2 NF₃
2.10 moles N₂ 2 moles NF₃
--------------------- x --------------------- = 4.20 moles NF₃
1 mole N₂
Hdhdjejdhebdehxhshwhdb d nonsense
Answer:
7.23 J
Explanation:
Step 1: Given data
- Mass of graphite (m): 566.0 mg
- Initial temperature: 5.2 °C
- Final temperature: 23.2 °C
- Specific heat capacity of graphite (c): 0.710J·g⁻¹K⁻¹
Step 2: Calculate the energy required (Q)
We will use the following expression.
Q = c × m × ΔT
Q = 0.710J·g⁻¹K⁻¹ × 0.5660 g × (23.2°C-5.2°C)
Q = 7.23 J
Answer:
it depends on the subject but i can see what i can do
Explanation: