Answer:
166 W
Explanation:
Power is the rate at which work is done.

The work done by Jill is the product of the weight of the pail and the height it moves.
The weight is the product of the mass and acceleration of gravity, <em>g</em>. Taking <em>g</em> as 9.81 m/s², the weight is
<em>W</em> = (6.90 kg)(9.81 m/s²) = 67.689 N
Work done = (67.689 N)(27.0 m) = 1827.603 J
Power = (1827.603 J) ÷ (11.0 s) = 166 W
Answer:
0.36 A.
Explanation:
We'll begin by calculating the equivalent resistance between 35 Ω and 20 Ω resistor. This is illustrated below:
Resistor 1 (R₁) = 35 Ω
Resistor 2 (R₂) = 20 Ω
Equivalent Resistance (Rₑq) =?
Since, the two resistors are in parallel connections, their equivalence can be obtained as follow:
Rₑq = (R₁ × R₂) / (R₁ + R₂)
Rₑq = (35 × 20) / (35 + 20)
Rₑq = 700 / 55
Rₑq = 12.73 Ω
Next, we shall determine the total resistance in the circuit. This can be obtained as follow:
Equivalent resistance between 35 Ω and 20 Ω (Rₑq) = 12.73 Ω
Resistor 3 (R₃) = 15 Ω
Total resistance (R) in the circuit =?
R = Rₑq + R₃ (they are in series connection)
R = 12.73 + 15
R = 27.73 Ω
Finally, we shall determine the current. This can be obtained as follow:
Total resistance (R) = 27.73 Ω
Voltage (V) = 10 V
Current (I) =?
V = IR
10 = I × 27.73
Divide both side by 27.73
I = 10 / 27.73
I = 0.36 A
Therefore, the current is 0.36 A.
To solve this problem we will make a graph that allows us to understand the components acting on the body. In this way we will have the centripetal Force and the Force by gravity generating a total component. If we take both forces and get the trigonometric ratio of the tangent we would have the angle is,


Dividing both.




Therefore the angle that should the curve be banked is 15.608°