1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jok3333 [9.3K]
3 years ago
15

the distance between 2 station is 5400 m find the time taken by a train to cover this distance, if the train travels with speed

60m/s
Physics
2 answers:
iragen [17]3 years ago
8 0

Answer:

I dont know bro

Explanation:

Ask an expert

strojnjashka [21]3 years ago
5 0

Answer:

Time=90s

Explanation:

Speed=distance /time

60 = \frac{5400}{t} where \: t \: is \: time \\60t = 5400  \\ t =  \frac{5400}{60}   \\ t =90 \\ hope \: this \: helps..good \: luck

You might be interested in
A rocket is moving with constant velocity of 2000ms and accelerates uniformly at 10ms. What is the velocity after 5 minutes?
AnnyKZ [126]
The velocity is 300ml in 5 mins
8 0
3 years ago
Thermopane window is constructed, using two layers of glass 4.0 mm thick, separated by an air space of 5.0 mm.
Bond [772]

To solve this problem it is necessary to apply the concepts related to rate of thermal conduction

\frac{Q}{t} = \frac{kA\Delta T}{d}

The letter Q represents the amount of heat transferred in a time t, k is the thermal conductivity constant for the material, A is the cross sectional area of the material transferring heat, \Delta T, T is the difference in temperature between one side of the material and the other, and d is the thickness of the material.

The change made between glass and air would be determined by:

(\frac{Q}{t})_{glass} = (\frac{Q}{t})_{air}

k_{glass}(\frac{A}{L})_{glass} \Delta T_{glass} = k_{air}(A/L)_{air} \Delta T_{air}

\Delta T_{air} = (\frac{k_{glass}}{k_{air}})(\frac{L_{air}}{L_{glass}}) \Delta T_{glass}

\Delta T_{air} = (\frac{0.84}{0.0234})(\frac{5}{4}) \Delta T_{glass}

\Delta T_{air} = 44.9 \Delta T_{glass}

There are two layers of Glass and one layer of Air so the total temperature would be given as,

\Delta T = \Delta T_{glass} +\Delta T_{air} +\Delta T_{glass}

\Delta T = 2\Delta T_{glass} +\Delta T_{air}

20\°C = 46.9\Delta T_{glass}

\Delta T_{glass} = 0.426\°C

Finally the rate of heat flow through this windows is given as,

\Delta {Q}{t} = k_{glass}\frac{A}{L_{glass}}\Delta T_{glass}

\Delta {Q}{t} = 0.84*24*10 -3*0.426

\Delta {Q}{t} = 179W

Therefore the correct answer is D. 180W.

3 0
3 years ago
Un lector de DVD, la velocidad de giro es de 5400 rpm. determina el valor velocidad angular en rad/s,la frecuencia y el periodo
zubka84 [21]

Responder:

A) ω = 565.56 rad / seg

B) f = 90Hz

C) 0.011111s

Explicación:

Dado que:

Velocidad = 5400 rpm (revolución por minuto)

La velocidad angular (ω) = 2πf

Donde f = frecuencia

ω = 5400 rev / minuto

1 minuto = 60 segundos

2πrad = I revolución

Por lo tanto,

ω = 5400 * (rev / min) * (1 min / 60s) * (2πrad / 1 rev)

ω = (5400 * 2πrad) / 60 s

ω = 10800πrad / 60 s

ω = 180πrad / seg

ω = 565.56 rad / seg

SI)

Dado que :

ω = 2πf

donde f = frecuencia, ω = velocidad angular en rad / s

f = ω / 2π

f = 565.56 / 2π

f = 90.011669

f = 90 Hz

C) Periodo (T)

Recordar T = 1 / f

Por lo tanto,

T = 1/90

T = 0.0111111s

3 0
3 years ago
An object with a higher temperature can have less thermal energy than an object
Anna [14]
It’s true, because it also depends on things like mass. Higher temperature but less mass< Lower temperature but more mass.
4 0
3 years ago
A small branch is wedged under a 200 kg rock and rests on a smaller object. The smaller object is 2.0 m from the large rock and
Alexxandr [17]

Answer:

a

  F  =326.7 \ N

b

  M  = 6

Explanation:

From the question we are told that

          The mass of the rock is  m_r  =  200 \ kg

          The  length of the small object from the rock is  d  =  2 \ m

          The  length of the small object from the branch l  =  12 \ m

An image representing this lever set-up is shown on the first uploaded image

Here the small object acts as a fulcrum

The  force exerted by the weight of the rock is mathematically evaluated as

      W =  m_r *  g

substituting values

     W =   200 *  9.8

     W =   1960 \ N

 So  at  equilibrium the sum  of the moment about the fulcrum is mathematically represented as

         \sum  M_f  =  F * cos \theta *  l  -  W cos\theta  *  d =  0

Here  \theta is very small so  cos\theta  *  l  =  l

                               and  cos\theta  *  d  =  d

Hence

       F *   l  -  W  * d =  0

=>    F  = \frac{W * d}{l}

substituting values

        F  = \frac{1960 *  2}{12}

       F  =326.7 \ N

The  mechanical advantage is mathematically evaluated as

          M  = \frac{W}{F}

substituting values

        M  = \frac{1960}{326.7}

       M  = 6

6 0
3 years ago
Other questions:
  • A car, initially traveling at 15 meters per second
    15·1 answer
  • If 3.5 paper clips = 1.0 pencils and your paper is 1.5 pencils long, how many paper clips long is your paper?
    12·1 answer
  • A phone cord is 2.89 m long. The cord has a mass of 0.258 kg. A transverse wave pulse is produced by plucking one end of the tau
    9·1 answer
  • The diameter of a segment of an artery is reduced by a factor of two due to an obstruction. Assume that the flow is incompressib
    7·1 answer
  • WILL MARK BRAINLIEST
    8·2 answers
  • A glass of milk has what kind of energy?
    9·1 answer
  • How can gravitational energy play an important part of my life
    11·1 answer
  • Electric charge that is stationary is​
    5·1 answer
  • I am lonely to death
    11·2 answers
  • You get points!! IMPORTANT
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!