A whole number, not a fraction, that can be negative, positive or zero are integers. They cannot have decimal places.
Now, converting 0.000431 L to decimal an integer as:

Since, 
So,
.
Hence, the integer value for 0.000431 L is
.
Mixtures or combinations of various different metals or metallic substances form things called alloys. An alloy composed of mercury and other metal (or metals) forms "amalgam". When a true alloy is created, the component metals are combined together at a temperature which is greater than the melting point of all of them.
Also, it helps to remember the word "amalgamate", which means "to alloy (a metal) with mercury" according to Dictionary.com.
Hope this helped :)
(btw I'm like 3 brainliest answers away from my next rank so could you...you know... :)
Answer:
6 moles of Cl2
Explanation:
First, the equation has to be balanced, which makes it 4 FeCl3 + 3 O2 --> 2 Fe2O3 + 6 Cl2
Using this information, we can see that one mole of O2 will not be present in the reaction. Since four moles of FeCl3 are needed to react in the equation, which would produce six moles of Cl2, and only four moles of FeCl3 are present, six moles of Cl2 would be produced.
Answer is: the partial pressure of the helium gas is 0.158 atm.
p(mixture) = 0.48 atm; total pressure.
m(H₂) = 1.0 g; mass of hydrogen gas.
n(H₂) = m(H₂) ÷ M(H₂).
n(H₂) = 1.0 g ÷ 2 g/mol.
n(H₂) = 0.5 mol; amount of hydrogen.
m(He) = 1.0 g; mass of helium.
n(He) = 1 g ÷ 4 g/mol.
n(He) = 0.25 mol; amount of helium.
χ(H₂) = 0.5 mol ÷ 0.75 mol.
χ(H₂) = 0.67; mole fraction of hydrogen.
χ(He) = 0.25 mol ÷ 0.75 mol.
χ(He) = 0.33; mole fraction of helium.
p(He) = 0.33 · 0.48 atm.
p(He) = 0.158 atm; the partial pressure of the helium gas.
In order to find your answer you need to be <span>measuring entropy, so you will be using the following formula:
</span><span>delta S= S of (N2H4) + S of ( H2) - [2( S of NH3)]
</span>Hope this is very useful for you