n, n + 2, n + 4 - three consecutive even integers
the twice the sum of the second and third: 2[(n + 2) + (n + 4)]
twelve less than six times the first: 6n - 12
The equation:
2[(n + 2) + (n + 4)] = 6n - 12
2(n + 2 + n + 4) = 6n - 12
2(2n + 6) = 6n - 12 <em>use distributive property</em>
(2)(2n) + (2)(6) = 6n - 12
4n + 12 = 6n - 12 <em>subtract 12 from both sides</em>
4n = 6n - 24 <em>subtract 6n from both sides</em>
-2n = -24 <em>divide both sides by (-2)</em>
n = 12
n + 2 = 12 + 2 = 14
n + 4 = 12 + 4 = 16
<h3>Answer: 12, 14, 16</h3>
Answer:
a) 0.0002
b) 0.0057
c) 0.0364
Step-by-step explanation:
Lets start by stating the probabilities of a person belonging to each policy:
Standard: 0.3
Preferred: 0.5
Ultra- Preferred: 0.2
The probability of person belonging to each policy AND dying in the next year:
Standard: 0.3 x 0.015 = 0.0045
Preferred: 0.5 x 0.002 = 0.001
Ultra- Preferred: 0.2 x 0.001 = 0.0002
a) The probability a ultra - preferred policy holder dies in the next year is 0.001. To find the probability of a person being both a ultra - preferred policy holder AND die in the next year is: 0.001 x 0.2= 0.0002
b) The probability is given by adding the probabilities calculated before :
0.0045 + 0.001 + 0.0002 = 0.0057
c) We use the results above again. This is 0.0002 / (0.001 + 0.0045). The answer comes out to be 0.0364
Answer:
yes i could help you
Step-by-step explanation:
Answer:
$18.00
Step-by-step explanation:
8 x 1.25 = 10
8 + 10 = 18
Answer:

Step-by-step explanation:
By using the cos square identity in trigonometry i.e., cos2ϴ = 1 – sin2 ϴ, we can evaluate the exact value of cos(33 ). For calculating the exact value of cos(∏/6), we have to substitute the value of sin(30°) in the same formula.
cos(30°) = √1 – sin230°
The value of sin30° is 1/2 (Trigonometric Ratios)
cos(30°) = √1 – (1/2)2
cos(30°) = √1 – (1/4)
cos(30°) = √(1 * 4 – 1)/4
cos(30°) = √(4 – 1)/4
cos(30°) = √3/4
Therefore, cos(30°) = √3/2