Answer:
Final volume=V₂ = 216.3 mL
Explanation:
Given data:
Initial volume = 120.0 mL
Initial temperature = -12.3 °C (-12.3 +273 = 260.7 K)
Final volume = ?
Final temperature = 197.0 °C (197+273 = 470 K)
Solution:
We will apply Charles Law to solve the problem.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 120 mL × 470 K /260.7K
V₂ = 56400 mL.K /260.7K
V₂ = 216.3 mL
All elements have a AHf, of <u>0</u>
kJ/mole at standard temperature and pressure.
<h3>What is an element?</h3>
An element can be defined as a substance which cannot be split into two or more simpler forms by an ordinary chemical process
Below are the list of the first twenty elements:
- Hydrogen
- Helium
- Lithium
- Berylium
- Boron
- Carbon
- Nitrogen
- Oxygen
- Fluorine
- Neon
- Sodium
- Magnesium
- Aluminum
- Silicon
- Phosphorus
- Sulphur
- Chlorine
- Argon
- Potassium
- Calcium
So therefore, all elements have a AHf, of <u>0</u>
kJ/mole at standard temperature and pressure.
Learn more about elements:
brainly.com/question/11829854
#SPJ1
Answer: 8.3 J
Explanation:
We have the following measurement:

Rearranging the units:

Since 1 Newton is
:

Since 1 Joule is
:
This is the simplest form possible
Answer:
Both apply to a certain region
Choice C is correct
Explanation:
Weather refers to the atmospheric conditions of a given place over a short period of time, like a day.
On the other hand, Climate refers to the average climatic conditions of a particular region measured over a long period of time.
Both weather and climate apply to a certain region.
A compound<span> is a </span>pure substance<span> composed of two or more different atoms chemically bonded to one another. A </span>compound<span> can be destroyed by chemical means. It might be broken down into simpler </span>compounds<span>, into its elements or a combination of the two.</span>