1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
boyakko [2]
3 years ago
11

the olympic swimmer swims to the end of the 50 m pool and back 4 times. calculate the distance covered.

Physics
1 answer:
Ludmilka [50]3 years ago
7 0

Answer:

400 m

Explanation:

The swimmer swims 50 meters to one end of the pool but has to swim back therefore you double 50 which would be 100 meters. Then you have to multiply 100 by 4 since the swimmer did it 4 times.

You might be interested in
What is the temperature of a 3.72 mm cube (e=0.288) that radiates 56.6 W?
blsea [12.9K]

Answer:

The temperature is 2541.799 K

Explanation:

The formula for black body radiation is given by the relation;

Q = eσAT⁴

Where:

Q = Rate of heat transfer 56.6

σ = Stefan-Boltzman constant = 5.67 × 10⁻⁸ W/(m²·k⁴)

A = Surface area of the cube = 6×(3.72 mm)² = 8.3 × 10⁻⁵ m²

e = emissivity = 0.288

T = Temperature

Therefore, we have;

T⁴ = Q/(e×σ×A) = 56.6/(5.67 × 10⁻⁸ × 8.3 × 10⁻⁵ × 0.288) = 4.174 × 10¹⁴ K⁴

T  =  2541.799 K

The temperature = 2541.799 K.

7 0
3 years ago
Three identical charges q form an equilateral triangle of side a with two charges on the x-axis and one on the positive y-axis.
shusha [124]

Answer:

F_n = k*q*(\frac{2*(y + \frac{\sqrt{3}*a }{2}) }{((y+ \frac{\sqrt{3}*a }{2})^2 + (a/2)^2)^1.5 } +\frac{1}{y^2}  )

Explanation:

Given:

- Three identical charges q.

- Two charges on x - axis separated by distance a about origin

- One on y-axis

- All three charges are vertices

Find:

- Find an expression for the electric field at points on the y-axis above the uppermost charge.

- Show that the working reduces to point charge when y >> a.

Solution

- Take a variable distance y above the top most charge.

- Then compute the distance from charges on the axis to the variable distance y:

                                  r = \sqrt{(\frac{\sqrt{3}*a }{2} + y)^2 + (a/2)^2  }

- Then compute the angle that Force makes with the y axis:

                                 cos(Q) = sqrt(3)*a / 2*r

- The net force due to two charges on x-axis, the vertical components from these two charges are same and directed above:

                                 F_1,2 = 2*F_x*cos(Q)

- The total net force would be:

                                F_net = F_1,2 + kq / y^2

- Hence,

                                F_n = k*q*(\frac{2*(y + \frac{\sqrt{3}*a }{2}) }{((y+ \frac{\sqrt{3}*a }{2})^2 + (a/2)^2)^1.5 } +\frac{1}{y^2}  )

- Now for the limit y >>a:

                              F_n = k*q*(\frac{2*y(1 + \frac{\sqrt{3}*a }{2*y}) }{y^3((1+ \frac{\sqrt{3}*a }{2*y})^2 + (a/y*2)^2)^1.5 }) +\frac{1}{y^2}  )

- Insert limit i.e a/y = 0

                              F_n = k*q*(\frac{2}{y^2} +\frac{1}{y^2})  \\\\F_n = 3*k*q/y^2

Hence the Electric Field is off a point charge of magnitude 3q.

8 0
3 years ago
The earth has a vertical electric field at the surface, pointing down, that averages 119 N/C . This field is maintained by vario
velikii [3]

Answer:

q=5.37*10^{5}C

Explanation:

If we assume that the Earth is a spherical conductor, according to  Gauss's Law, the electric field is given by:

E=\frac{kq}{r^2}

Here k is the Coulomb constant, the excess charge on the Earth's surface and r its radius. Solving for q:

q=\frac{Er^2}{k}\\q=\frac{119\frac{N}{C}(6.371*10^6m)^2}{8.99\frac{N\cdot m^2}{C^2}}\\q=5.37*10^{5}C

5 0
3 years ago
A car veers off course and runs straight into a brick wall. This is an example
ValentinkaMS [17]
Short time large force
4 0
3 years ago
Professor blossom expects her students to be on time for class holds, them for the entire class period and has firm deadlines se
defon

Answer:

A dictatorship or tyranny.

Explanation:

8 0
3 years ago
Other questions:
  • If you have 4 kg of a sample with density of 1 897 g/ml what is the volume
    6·1 answer
  • What type of motor operates at a constant steady-state speed regardless of the load?
    8·1 answer
  • A mirror forms an erect image 40cm from the object and one third its height where must the mirror be situated ​
    12·1 answer
  • A block of mass 2.95 kg is placed against a horizontal spring of constant k = 820 N/m and pushed so the spring compresses by 0.0
    11·1 answer
  • A rhinoceros beetle rides the rim of a disk rotating like a merry-go-round counterclockwise.
    15·1 answer
  • A student walks 3
    12·1 answer
  • The linear expansivity of metal P is twice that of another metal Q. When these materials are heated through the same temperature
    13·1 answer
  • 1) Convert the following:<br>I) 65 kg into g<br>ii) 87570 seconds into hour<br>iii) 7.5 km into m​
    11·2 answers
  • Which change would create light?
    6·1 answer
  • 17. How long will it take for an object accelerating at a constant rate of 5 m/s to change its velocity from 0 to 6 m/s? (A) 0.6
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!