Answer:
The reaction quotient (Q) before the reaction is 0.32
Explanation:
Being the reaction:
aA + bB ⇔ cC + dD
![Q=\frac{[C]^{c} *[D]^{d} }{[A]^{a}*[B]^{b} }](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BC%5D%5E%7Bc%7D%20%2A%5BD%5D%5E%7Bd%7D%20%7D%7B%5BA%5D%5E%7Ba%7D%2A%5BB%5D%5E%7Bb%7D%20%20%7D)
where Q is the so-called reaction quotient and the concentrations expressed in it are not those of the equilibrium but those of the different reagents and products at a certain instant of the reaction.
The concentration will be calculated by:

You know the reaction:
PCl₅ (g) ⇌ PCl₃(g) + Cl₂(g).
So:
![Q=\frac{[PCl_{3} ] *[Cl_{2} ] }{[PCl_{5} ]}](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BPCl_%7B3%7D%20%5D%20%2A%5BCl_%7B2%7D%20%5D%20%7D%7B%5BPCl_%7B5%7D%20%5D%7D)
The concentrations are:
- [PCl₃]=

- [Cl₂]=

- [PCl₅]=

Replacing:

Solving:
Q= 0.32
<u><em>The reaction quotient (Q) before the reaction is 0.32</em></u>
Answer:
The most common reason for alloying is to increase the strength of a metal. This requires that barriers to slip be distributed uniformly throughout the crystalline grains. On the finest scale, this is done by dissolving alloying agents in the metal matrix (a procedure known as solid solution hardening
Explanation:
hey why u search i have book that answer i got mark as brainlist please okkkkkk
The fourth option on Edgen, "two alcohol functional groups". You're welcome :)
Answer:
Indicators show changes in the pH of a solution
Explanation:
A pH meter is an instrument that measures the hydrogen-ion activity in aqueous solutions, indicating the acidity or alkalinity of the solution expressed as pH .The pH meter measures the difference in electrical potential between a pH electrode and a reference electrode, hence the pH meter is sometimes referred to as a potentiometric pH meter. Potentiometric pH meters measure the voltage between two electrodes and display the result converted into the corresponding pH value. The instrument comprises of a simple electronic amplifier and a pair of electrodes, or alternatively a combination electrode, and some form of display calibrated in pH units. It usually has a glass electrode and a reference electrode, or a combination electrode. The electrodes, or probes, are inserted into the solution to be tested.
Organic indicators are chemical species that change their colour in response to changes in the pH of the solution. This implies that the anionic and protonated forms of the indicator possess different colours. Hence the colour changes in acidic, basic and neutral solutions. The images attached indicate the colour changes in phenolphthalein and methyl orange in acidic and basic media accordingly.