Delta H = q / mass * delta temperature
pH decreases as the hydrogen ion concentration increases.
<u>Explanation:</u>
When there is a decrease in pH, that is pH decreases from 6 to 3 then the acidity increases.
That is the pH is between 1 to 7 then it is acidic
When the pH is 7 then it is neutral
When the pH is between 7 to 14 then it is basic
As the H⁺ ion concentration increases, then the pH value decreases, here pH decreases from 6 to 3.
So the concentration of Hydrogen ion increases, pH decreases.
Answer:
the answer is distillation
Answer:
ΔG = -61.5 kJ/mol (<u>Spontaneous process</u>)
Explanation:
2 NO (g) + O₂ (g) ⇄ 2NO₂ (g)
Let's apply the thermodynamic formula to calculate the ΔG
ΔG = ΔG° + R .T . lnQ
We don't know if the gases are at equilibrium, that's why we apply Q (reaction quotient)
ΔG = - 69 kJ/mol + 8.31x10⁻³ kJ/K.mol . 298K . ln Q
How can we know Q? By the partial pressures (Qp)
P NO = 0.450atm
PO₂ = 0.1 atm
PNO₂ = 0.650 atm
Qp = [NO₂]² / [NO]² . [O₂]
Qp = 0.650² / 0.450² . 0.1 = 20.86
ΔG = - 69 kJ/mol + 8.31x10⁻³ kJ/K.mol . 298K . ln 20.86
ΔG = -61.5 kJ/mol (<u>Spontaneous process</u>)
Two protons and two neutrons are emitted and trapped as materials like uranium and thorium deep underground decay into radium and thorium, respectively. These alpha-particles transform into stable helium atoms as they take on electrons from their surroundings.
<h3>
What elements go through alpha decay?</h3>
Alpha decay usually occurs in heavy nuclei such as uranium or plutonium, and therefore is a major part of the radioactive fallout from a nuclear explosion.
<h3>
Where does alpha decay occur?</h3>
Alpha decay occurs most often in massive nuclei that have too large a proton to neutron ratio. An alpha particle, with its two protons and two neutrons, is a very stable configuration of particles.
Learn more about alpha decay here:
brainly.com/question/1898040
#SPJ4