Based on the information I would assume B, 73 degrees...
It shouldn't be A, 4 minutes on the burner should increase the temperature.
If it were D, it would be beyond boiling, and water takes a decent amount of energy to heat, D should be all vapor.
Same logic for C, it's basically almost boiling.
I would say 73 degrees seems most reasonable for 4 minutes.

<h3><u>Basic </u><u>Characteristic </u><u>of </u><u>acids </u></h3>
- Acids are sour in taste
- Acid turns blue litmus paper or solution into red litmus paper or solution
- Acids are good conductor of electricity because it dissociate into cation in aqueous solution
- Acids classified into edible acids and non edible acids. Non edible acids are very hazardous
- Generally, All acids are soluble in water
- Acids have PH smaller than 7
<u>Arrhenius </u><u>definition </u><u>of </u><u>acids </u><u>:</u><u>-</u>
According to Arrehinus,
- Acids are those substances which when dissolve in water given H positive ions . Then, this hydrogen ions combine with water to form H30 + ions
<u>Second </u><u>definition </u><u>of </u><u>Acids </u><u>was </u><u>given </u><u>by </u><u>Bonsted </u><u>Lowry </u><u>:</u><u>-</u>
According to Bonsted Lowry
- Acids are the proton donors that is when acids dissociate into water gives hydrogen ions that is H+ ions
<u>3rd </u><u>definition </u><u>was </u><u>given </u><u>by </u><u>Lewis </u>
According to Lewis
- Acids are those substances which have the ability to accept a pair of electrons .
Example of Acids
- HNO3 :- Nitric acid
- H2SO4 :- Sulfuric acid
- HCl :- Hydrochloric acid
<h3><u>Basic </u><u>characterists </u><u>of </u><u>bases </u></h3>
- Bases are bitter in taste
- Bases turns red litmus paper into blue litmus paper or solution
- Bases are also good conductor of electricity because on dissociation it produces anion in aqueous solution
- Bases are also good conductor of electricity
- When bases are soluble in water then they are known as alkaline base
- Bases have PH greater than 7
<u>Arrehinus definition of bases :-</u>
According to Arrehinus ,
- Bases are those substances which when dissolve in water produce OH negative ions that is hydroxide ions
<u>Bonsted Lowry definition </u>
According to Bonsted Lowry
- Bases are the proton donors as they produce OH negative ions in dissociation in aqueous solution
<u>Lewis </u><u>definition </u>
According to Lewis
- Acids are those substances which have the ability to lose electrons that is they are electron donors.
Example of bases
- Ca(OH)2 :- Calcium hydroxide
- NaOH :- Sodium hydroxide
- KOH :- Potassium hydroxide
[ Note :- There are so many Lewis acids and bases but they are not Arrhenius or Lowry acids or bases ]
<h3><u>Basic </u><u>characteristic </u><u>of </u><u>salt </u></h3>
- Salts are the ionic compounds which are composed of acids and bases that cation and anion
- Salts are generally found in oceans and seas in the forms of crystals
- As they are composed of acids and bases so they are neutral in nature but the salt of strong acid or weak base is acidic in nature or vice versa
- Salts are also good conductor of electricity as they form ionic bond
- Generally, All salts are soluble in water.
- The PH of common Salt is 7
Example of salts
- NH4Cl :- Ammonium chloride
- CuSO4 :- Copper sulphate
- NaCl :- Sodium chloride
1.062 mol/kg.
<em>Step 1</em>. Write the balanced equation for the neutralization.
MM = 204.22 40.00
KHC8H4O4 + NaOH → KNaC8H4O4 + H2O
<em>Step 2</em>. Calculate the moles of potassium hydrogen phthalate (KHP)
Moles of KHP = 824 mg KHP × (1 mmol KHP/204.22 mg KHP)
= 4.035 mmol KHP
<em>Step 3</em>. Calculate the moles of NaOH
Moles of NaOH = 4.035 mmol KHP × (1 mmol NaOH/(1 mmol KHP)
= 4.035 mmol NaOH
<em>Step 4</em>. Calculate the mass of the NaOH
Mass of NaOH = 4.035 mmol NaOH × (40.00 mg NaOH/1 mmol NaOH)
= 161 mg NaOH
<em>Step 5</em>. Calculate the mass of the water
Mass of water = mass of solution – mass of NaOH = 38.134 g - 0.161 g
= 37.973 g
<em>Step 6</em>. Calculate the molal concentration of the NaOH
<em>b</em> = moles of NaOH/kg of water = 0.040 35 mol/0.037 973 kg = 1.062 mol/kg