1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vilka [71]
3 years ago
10

A child sets off the firecracker at a distance of 100 m from the family house. what is the sound intensity β100 at the house?

Physics
2 answers:
KATRIN_1 [288]3 years ago
6 0

To solve this problem, we use the formula:

I100 / I1 = [P / 4π(100m)^2] / [P / 4π(1m)^2]

I100 / I1 = 1 / 100^2

I100 / I1 = 10^-4

 

Therefore the change in intensity from 1m to 100m in decibels is:

B100 – B1 = 10 log(10^-4) dB = -40 dB

 

So the intensity at 100m is calculated as:

B100 = B1 – 40 dB = 140 dB – 40 dB = 100 dB

 

Answer:

100 dB

Sonbull [250]3 years ago
3 0

The intensity of the sound produced due to the firecracker at the distance of 100\text{ m} is \fbox{\begin\\100\text{ dB}\end{minispace}}.

Further Explanation:

The vibration, produced in the medium, which travels as an wave of pressure or density through a medium is known as sound. The sound is a longitudinal wave and it requires a medium for its propagation.  

Given:

The distance between the place where firecracker is set off by a child and the family house is 100\text{ m}.  

The intensity of the sound produced by the firecracker at the distance 1\text{ m} is140\text{ dB}.

Concept:

The intensity of the sound wave is defined as the power carried by the sound waves in the direction perpendicular to the direction of propagation per unit time.

The intensity of the sound wave is:

\fbox{\begin\\I=\dfrac{P}{4\pi r^2}\end{minispace}}                                                        ...... (1)

Here, I is the intesnity of the sound wave, P is the power carried by the sound wave and r is the distance between source and the listener.

The intensity of the sound in decible at the house is:

\fbox{\begin\\\beta _{100}=\beta _{1}+10\log \dfrac{I_{100}}{I_{1}}\end{minispace}} ...... (2)

Here, \beta _{100} is the intensity of the sound at the distance of 100\text{ m}, \beta _{1} is the intensity of sound produced by the firecracker at the distance of 1\text{ m}, I_{100} is the intensity of sound produced by firecracker at 100\text{ m} and I_{1} is the intensity of sound produced by firecracker at 1\text{ m}.

The ratio of the intensity of sound at distance 100\text{ m} and 1\text{ m} is:

\fbox{\begin\\\dfrac{{{I_{100}}}}{{{I_1}}}=\frac{{r_1^2}}{{r_2^2}}\end{minispace}}                                                                                     …… (3)

Calculation:

Substitute the values in equation (3).

\begin{aligned}\frac{{{I_{100}}}}{{{I_1}}}&=\frac{{{{\left( 1 \right)}^2}}}{{{{\left( {100} \right)}^2}}}\\&={10^{ - 4}}\\\end{aligned}

Substitute the values in equation (2).

\begin{aligned}{\beta _{100}}&=140\,{\text{dB}} - 40\,{\text{dB}} \\&=100\,{\text{dB}}\\\end{aligned}.

Thus, the intensity of the sound produced due to the firecracker at the distance of 100\text{ m} is \fbox{\begin\\100\text{ dB}\end{minispace}}

Learn more:

1.  The motion of a body under friction brainly.com/question/4033012

2.  A ball falling under the acceleration due to gravity brainly.com/question/10934170

3. Conservation of energy brainly.com/question/3943029

Answer Details:

Grade: College

Subject: Physics

Chapter: Waves and Oscillation

Keywords:

Intensity of sound, sound waves, vibration, firecracker, power carried by sound waves, 100db, 100 dB, 100dB, 100 m, bursting of firecrackers, sound inside the house, 140 db, 140 dB.

You might be interested in
If you wanted the pitch of a horn to drop relative to an observer, which way would you move the horn, relative to where that obs
Vladimir [108]
We assume that horn releases sound of constant frequency. In order for observer to observe different frequency either horn or observer or both must move.

This happens due to Doppler effect. It states that when position of source of sound and observer relative to each other changes, the observed frequency also changes. If the source emits sound of constant frequency than observed frequency will be either higher or lower than original.

When distance between source and observer increases the observed frequency will be lower. This is because same number of sound waves must cover greater distance so they have greater wavelength.
When distance between source and observer decreases the observed frequency will be higher. This is because same number of sound waves must cover smaller distance so they have smaller wavelength. 

Wavelength and frequency are inversely proportional meaning when one increases the other drecreases.

From this explanation we can find answer for our question. <span>If we wanted the pitch of a horn to drop relative to an observer we need to move horn away from an observer.</span>
3 0
3 years ago
Why does a skier wear polarized glasses instead of glasses that are used for reading?
Afina-wow [57]
<span>A skier wears polarized glasses instead of glasses that are used for reading because p</span><span>olarized glasses decrease reflected glare compared to regular glasses. (D)

Hope this answers your question correctly.</span>
8 0
3 years ago
Read 2 more answers
a particle with a charge of 5.5 x 10^-8 c is 3.5 cm from a particle with a charge of -2.3 x10^-8 c. the potential energy of this
Yuri [45]

Answer:

-32.5 * 10^-5 J

Explanation:

The potential energy of this system of charges is;

Ue = kq1q2/r

Where;

k is the Coulumb's constant

q1 and q2 are the magnitudes of the charges

r is the distance of separation between the charges

Substituting values;

Ue = 9.0×10^9 N⋅m2/C2 * 5.5 x 10^-8 C *( -2.3 x10^-8) C/(3.5 * 10^-2)

Ue= -32.5 * 10^-5 J

4 0
3 years ago
State four law of photoelectric effect​
Bogdan [553]

Answer:

LAW 1 :  For a given metal and frequency, the number of photoelectrons emitted is directly proportional to the intensity of the incident radiation.  

---------------------------------------------

LAW 2: For a given metal, there exists a certain frequency below which the photoelectric emission does not take place. This frequency is called threshold frequency.

-----------------------------------------------

LAW 3: For a frequency greater than the threshold frequency, the kinetic energy of photoelectrons is dependent upon frequency or wavelength but not on the intensity of light.

-----------------------------------------------

LAW 4: Photoelectric emission is an instantaneous process. The time lag between incidence of radiations and emission of electron is 10^-9 seconds.

Explanation:

7 0
2 years ago
Read 2 more answers
50 points for this please help
Softa [21]

but the points are only 25

7 0
3 years ago
Read 2 more answers
Other questions:
  • A. Telephone signals are often transmitted over long distances by microwaves. What is the frequency of microwave radiation with
    5·1 answer
  • Which of the following are equal to -40°F?
    6·2 answers
  • Type a nerve fibers in humans can conduct nerve impulses at speeds up to 140 m/s. (a) how fast are the nerve impulses in miles p
    9·1 answer
  • An electric dipole is in a uniform electric field of magnitude 8.50×104N/C. The charges in the dipole are separated by 1.10×10−1
    13·2 answers
  • Starting from rest, a 2.3x10-4 kg flea springs straight upward. While the flea is pushing off from the ground, the ground exerts
    10·1 answer
  • Which of the following adaptations best protects birds from bird catchers?
    14·2 answers
  • What is specific gravity?
    7·1 answer
  • 1. To get to school, a girl walks 1 km North in 15 minutes. She
    7·1 answer
  • help please According to the Universal Law of Gravitation, every object attracts every other object in the universe. Why can’t y
    5·1 answer
  • How are newtons third law of motion applies to a system of objects
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!