1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mkey [24]
3 years ago
10

A rocket in deep space has an empty mass of 150 kg and exhausts the hot gases of burned fuel at 2500 m/s. It is loaded with 600

kg of fuel, which it burns in 30 s. What is the rocket’s speed 10 s, 20 s, and 30 s after launch?
Physics
1 answer:
3241004551 [841]3 years ago
7 0

Answer:

v(10\,s) \approx 775.387\,\frac{m}{s}

v(20\,s)\approx 1905.350\,\frac{m}{s}

v(30\,s) \approx 4023.595\,\frac{m}{s}

Explanation:

The speed of the rocket is given the Tsiolkovsky's differential equation, whose solution is:

v (t) = v_{o} - v_{ex}\cdot \ln \frac{m}{m_{o}}

Where:

v_{o} - Initial speed of the rocket, in m/s.

v_{ex} - Exhaust gas speed, in m/s.

m_{o} - Initial total mass of the rocket, in kg.

m - Current total mass of the rocket, in kg.

Let assume that fuel is burned linearly. So that,

m(t) = m_{o} + r\cdot t

The initial total mass of the rocket is:

m_{o} = 750\,kg

The fuel consumption rate is:

r = -\frac{600\,kg}{30\,s}

r = -20\,\frac{kg}{s}

The function for the current total mass of the rocket is:

m(t) = 750\,kg - (20\,\frac{kg}{s} )\cdot t

The speed function of the rocket is:

v(t) = - 2500\,\frac{m}{s}\cdot \ln \frac{750\,kg -(20\,\frac{kg}{s} )\cdot t}{750\,kg}

The speed of the rocket at given instants are:

v(10\,s) \approx 775.387\,\frac{m}{s}

v(20\,s)\approx 1905.350\,\frac{m}{s}

v(30\,s) \approx 4023.595\,\frac{m}{s}

You might be interested in
An open organ pipe is 1.6m long. If the speed of sound is 343m/s, what are the pipes: a) fundamental , b) 1st overtone , & c
Yakvenalex [24]

Answer:

a) 107.1875 Hz

b) 214.375 Hz

c) 321.5625 Hz

Explanation:

L = length of the open organ pipe = 1.6 m

v = speed of sound = 343 m/s

f = fundamental frequency

fundamental frequency is given as

f = \frac{v}{2L}

inserting the values

f = \frac{343}{2(1.6)}

f = \frac{343}{2(1.6)}

f = 107.1875 Hz

b)

first overtone is given as

f' = 2f

f' = 2 (107.1875)

f' = 214.375 Hz

c)

first overtone is given as

f'' = 3f

f'' = 3 (107.1875)

f'' = 321.5625 Hz

3 0
3 years ago
An empty beaker is placed on a top-pan balance. Some water is now poured into the beaker.What is the weight of the water? A. 0.0
mario62 [17]

Answer:

A. 0.044 kg

Explanation:

We need to subtract the sum of (beaker+water - empty beaker) which is 0.106 kg - 0.062 kg = 0.044 kg. The answer will not be written in Newton because this unit is used for force only and in this question w have to find the weight.

Hope it is enough.

Please mark me as brainliest.

6 0
3 years ago
A pipe that is open at both ends has a fundamental frequency of 320 Hz when the speed of sound in air is 331 m/s.
fenix001 [56]

Question

What is the length of the pipe?

Answer:

(a) 0.52m

(b) f2=640 Hz and f3=960 Hz

(c) 352.9 Hz

Explanation:

For an open pipe,  the velocity is given by

v=\frac {2Lf}{n}

Making L the subject then

L=\frac {nV}{2f}

Where f is the frequency,  L is the length,  n is harmonic number,  v is velocity

Substituting 1 for n,  320 Hz for f and 331 m/s for v then

L=\frac {1*331}{2*320}=0.5171875\approx 0.52m

(b)

The next two harmonics is given by

f2=2fi

f3=3fi

f2=3*320=640 Hz

f3=3*320=960 Hz

Alternatively, f2=2\times \frac {v}{2L} and f3=3\times \frac {v}{2L}

f2=2\times \frac {331}{2*0.52}=636.5 Hz\\f3=3\times \frac {331}{2*0.52}=954.8 Hz

(c)

When v=367 m/s then

f1= \frac {v}{2L}\\f1= \frac {367}{2*0.52}=352.9 Hz

5 0
3 years ago
I don't get this question could someone help out
ratelena [41]

Answer:

that would probably be Rock A is harder than Rock B

Explanation:

Because if Rock A can scratch Rock B then it obviously means that Rock A is harder.

Right?

Hope This Helps You Out♡

8 0
3 years ago
Firemen are shooting a stream of water at a burning building. A high-pressure hose shoots out the water with a speed of 26.0 m/s
alekssr [168]

Answer:

a) θ = 58.3º

b) vfh = 13.7 m/s

c) g = -9.8 m/s2

d) h = 22.2 m

e) vfb = 15.5 m/s

Explanation:

a)

  • Assuming that gravity is the only influence that causes an acceleration to the water, due to it is always downward, since both directions are independent each other, in the horizontal direction, the water moves at a constant speed.
  • Since the velocity vector has a magnitude of 26.0 m/s, we can find its horizontal component as follows:
  • vₓ₀ = v * cos θ (1)
  • where θ is the angle between the water and the horizontal axis (which we define as the x-axis, being positive to the right).
  • Applying the definition of average velocity, taking the end of the hose like the origin, and making t₀ = 0, we can write the following expression:

        x_{f} = v_{ox} * t = v_{o} * cos \theta * t  (2)

  • Replacing by the givens of xf = 41.0m, t = 3.00 s, and v=26.0 m/s, we can solve for the angle of elevation θ, as follows:

        cos \theta = \frac{x_{f} }{v*t} = \frac{41.0m}{26.0m/s*3.00s} = 0.526 (3)

  • ⇒θ = cos⁻¹ (0.526) = 58.3º (4)

b)

  • At the highest point in its trajectory, just before starting to fall, the vertical component of the velocity is just zero.
  • Since the horizontal component keeps constant during all the journey, we can conclude that the speed at this point is just v₀ₓ, that we can find easily from (1) replacing by the values of v and cos θ, as follows:
  • vₓ₀ = v * cos θ = 26.0 m/s * 0.526 = 13.7 m/s. (5)

c)

  • At any point in the trajectory, the only acceleration present is due to the action of gravity, which accepted value is -9.8 m/s2 (taking the upward direction on the vertical y-axis as positive)

d)

  • Since we know the time when the water strikes the building, it will be the same for the vertical movement, so, we can use the kinematic equation for vertical displacement, as follows:

       \Delta y = v_{oy} * t - \frac{1}{2} *g*t^{2} (6)

  • Our only unknown remains v₀y, which can be obtained in the same way than the horizontal component:
  • v₀y = v * sin θ = 26.0 m/s * 0.85 = 22.1 m/s (7)
  • Replacing (7) in (6), we get:

       \Delta y = 22.1 m/s* 3.0s - \frac{1}{2} *9.8m/s2*(3.00s)^{2} = 22.2 m (8)

e)

  • When the water hits the building the velocity vector, has two components, the horizontal vₓ and the vertical vy.
  • The horizontal component, since it keeps constant, is just v₀x:
  • v₀ₓ = 13.7 m/s
  • The vertical component can be found applying the definition of acceleration (g in this case), solving for the final velocity, as follows:

       v_{fy} = v_{oy} - g*t  (9)

  • Replacing by the time t (a given), g, and  v₀y from (7), we can solve (9) as follows:

       v_{fy} = 22.1 m/s - 9.8m/s2*3.00s = -7.3 m/s  (10)

  • Since we know the values of both components (perpendicular each other), we can find the magnitude of the velocity vector (the speed, i.e. how fast is it moving), applying the Pythagorean Theorem to v₀ₓ and v₀y, as follows:

       v_{f} = \sqrt{(13.7m/s)^{2} +(-7.3m/s)^{2}} = 15.5 m/s (11)

3 0
3 years ago
Other questions:
  • Can a body have constant speed and still be acclerating ? Give an Example
    7·1 answer
  • A transformer is to be used to step down voltage from an alternating current source from 220V to 110V. If the primary has 120 tu
    14·1 answer
  • 2 decaliters + 800 deciliters = __________ liters?
    14·2 answers
  • Existing rocks can become sedimentary rocks when they are subjected to which conditions?
    6·1 answer
  • As a rocket rises, its kinetic energy changes. At the time the rocket reaches its highest point, most of the kinetic energy of r
    7·2 answers
  • The amount of usable energy from anaerobic respiration is less than the amount of useable energy from aerobic respiration becaus
    11·2 answers
  • What is the charge of an atom with 21 protons and 6 electrons
    13·2 answers
  • Consider two insulating balls with evenly distributed equal and opposite charges on their surfaces, held with a certain distance
    8·1 answer
  • Describe how radio waves are different from sound waves.
    8·2 answers
  • A rectangle has a length of (2.5 ± 0.2) m and a width of (1.5 ± 0.2) m. Calculate the area and the perimeter of the rectangle, a
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!