As a practical equation, this one doesn't make much sense -- why would the profit per person have a term proportional to the number of people? Let's just go with it.



That's the answer to the first part.
35/x represents a portion of the profit that's 35/x per person, or a constant $35 per tour.
Answer:
(x,y)--> (x+4,y-4)
Step-by-step explanation:
Answer:
the table should show the data
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> )
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> ) × (-1 + <em>i</em> ) / (-1 + <em>i</em> )
<em>z</em> = (3<em>i</em> × (-1 + <em>i</em> )) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3<em>i</em> + 3<em>i</em> ²) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3 - 3<em>i </em>) / (1 - (-1))
<em>z</em> = (-3 - 3<em>i </em>) / 2
Note that this number lies in the third quadrant of the complex plane, where both Re(<em>z</em>) and Im(<em>z</em>) are negative. But arctan only returns angles between -<em>π</em>/2 and <em>π</em>/2. So we have
arg(<em>z</em>) = arctan((-3/2)/(-3/2)) - <em>π</em>
arg(<em>z</em>) = arctan(1) - <em>π</em>
arg(<em>z</em>) = <em>π</em>/4 - <em>π</em>
arg(<em>z</em>) = -3<em>π</em>/4
where I'm taking arg(<em>z</em>) to have a range of -<em>π</em> < arg(<em>z</em>) ≤ <em>π</em>.
Answer:
15 Square Inches
Step-by-step explanation:
Volume of the cone=40 cubic inches
Height of the cone=8 Inches
<u>Step 1:</u> Applying the formula for the volume of a cone
Volume of a Cone
<u>Step 2:</u> Substituting values for the variables

<u>Step 3:</u> Simplifying the right side

<u>Step 4:</u> Multiplying by the reciprocal

<u>Therefore, Base Area of the Cone=15 Square Inches</u>
<u />