Answer:
Answer is It was deduced from the rate at which it glimmers.
Refer below.
Explanation:
The X-ray source Cygnus X-1 has a mass of at least 11 solar masses and a diameter of only about one-quarter the diameter of the Earth. With such a small diameter it must be a compact object, and with such a large mass it can't be a white dwarf or a neutron star, so a black hole is the only possibility remaining. The diameter of Cygnus X-1 found:
It was deduced from the rate at which it glimmers.
Answer:
Total distance travelled = 210m
Explanation:
Distance travelled = 80m + 50m + 10m + 70m
= 210m
Answer:
50 W
Explanation:
Case 1
Power = V * I
100 = 220 * I
I =
A
Case 2
P = V * I
P = 110 * 
P = 50 W
I think the answer is 50 W
Hope it helps
If the field is in a vacuum, the magnetic field is the dominant factor determining the motion. Since the magnetic force is perpendicular to the direction of travel, a charged particle follows a curved path in a magnetic field. The particle continues to follow this curved path until it forms a complete circle. Another way to look at this is that the magnetic force is always perpendicular to velocity, so that it does no work on the charged particle. The particle’s kinetic energy and speed thus remain constant. The direction of motion is affected but not the speed.
A negatively charged particle moves in the plane of the paper in a region where the magnetic field is perpendicular to the paper (represented by the small × ’s—like the tails of arrows). The magnetic force is perpendicular to the velocity, so velocity changes in direction but not magnitude. The result is uniform circular motion.