Answer:

we can see that this time period is independent of the mass of the child so answer would be same if the child mass is different
Explanation:
Natural frequency of a simple pendulum of L length is given as

so the time period of the oscillation is given as

so we will have



also from above formula we can see that this time period is independent of the mass of the child so answer would be same if the child mass is different
Answer:
Explanation:
As it mostly occurs on a surface where an ecosystem has previously existed. Primary succession only occurs on a surface where no ecosystem existed ever before!
Answer:
the maximum theoretical work that could be developed by the turbine is 775.140kJ/kg
Explanation:
To solve this problem it is necessary to apply the concepts related to the adiabatic process that relate the temperature and pressure variables
Mathematically this can be determined as

Where
Temperature at inlet of turbine
Temperature at exit of turbine
Pressure at exit of turbine
Pressure at exit of turbine
The steady flow Energy equation for an open system is given as follows:

Where,
m = mass
m(i) = mass at inlet
m(o)= Mass at outlet
h(i)= Enthalpy at inlet
h(o)= Enthalpy at outlet
W = Work done
Q = Heat transferred
v(i) = Velocity at inlet
v(o)= Velocity at outlet
Z(i)= Height at inlet
Z(o)= Height at outlet
For the insulated system with neglecting kinetic and potential energy effects

Using the relation T-P we can find the final temperature:


From this point we can find the work done using the value of the specific heat of the air that is 1,005kJ / kgK

the maximum theoretical work that could be developed by the turbine is 775.140kJ/kg
The momentum of the red cart before the collision is 0.2 kgm/s and the blue cart is 0.
The momentum of the red cart after the collision is 0.05 kgm/s and the blue cart is 0.15 kgm/s.
The change in momentum of the system of the carts is 0.
<h3>
Initial momentum of the carts before collision</h3>
The momentum of the carts before the collision is calculated as follows;
P(red) = 0.5 kg x 0.4 m/s = 0.2 kgm/s
P(blue) = 1.5 x 0 = 0
<h3>Momentum of the carts after collision</h3>
The momentum of the carts after the collision is calculated as follows;
P(red) = 0.5 x 0.1 = 0.05 kgm/s
P(blue) = 1.5 0.1 = 0.15 kgm/s
<h3>Change in momentum of the carts</h3>

ΔP = (0.05 + 0.15) - (0.2)
ΔP = 0
Learn more about momentum here: brainly.com/question/7538238