Answer:
Se the explanation below
Explanation:
We do not feel these forces of these bodies, because they are very small compared to the force of Earth's attraction. Although its mass is greater than that of a human being, its mass is not compared to the Earth's mass. In order to understand this problem we will use numerical data and the universal gravitation formula, to give validity to the explanation.
<u>Force exerted by the Earth on a human being</u>
<u />
Where:
G = universal gravitation constant = 6.673*10^-11 [N*m^2/kg^2]
m1 = mass of the person = 80 [kg]
m2 = mass of the earth 5.97*10^24[kg]
r = distance from the center of the earth to the surface or earth radius = 6371 *10^3 [m]
<u />
Now replacing we have
<u>Force exerted by a building on a human being</u>
<u />
Where:
G = universal gravitation constant = 6.673*10^-11 [N*m^2/kg^2]
m1 = mass of the person = 80 [kg]
m2 = mass of the earth 300000 [ton] = 300 *10^6[kg]
r = distance from the building to the person = 2[m]
As we can see the force exerted by the Earth is 2000 times greater than that exerted by a building with the proposed data.
Lighting is the static electricity stored in the clouds that is disposed to the earth.
<h2>MARK BRAINLIEST</h2>
For this assignment, you will develop several models that show how light waves and mechanical waves are reflected, absorbed, or transmitted through various materials. For each model, you will write a brief description of the interaction between the wave and the material. You will also compose two <u><em>typewritten</em></u> paragraphs. The first will compare and contrast light waves interacting with different materials. The second will explain why materials with certain properties are well suited for particular functions.
<h2><u>Background Information</u></h2>
A wave is any disturbance that carries energy from one place to another. There are two different types of waves: mechanical and electromagnetic. A mechanical wave carries energy through matter. Energy is transferred through vibrating particles of matter. Examples of mechanical waves include ocean waves, sound waves, and seismic waves. Like a mechanical wave, an electromagnetic wave can also carry energy through matter. However, unlike a mechanical wave, an electromagnetic wave does not need particles of matter to carry energy. Examples of electromagnetic waves include microwaves, visible light, X-rays, and radiation from the Sun.
Answer: F = 1235 N
Explanation: Newton's Second Law of Motion describes the effect of mass and net force upon acceleration:
Acceleration is the change of velocity in a period of time:
Velocity of the car is in km/h. Transforming it in m/s:
v = 13 m/s
At the moment the car decelerates, acceleration is
a = 65 m/s²
Then, force will be
= 1235 N
The horizontal net force the straps of the restraint chair exerted on the child to hold her is 1235 newtons.