In a stationary situation, the weight of person is

This is the weight "felt" by the scale, which is basically the normal reaction applied by the scale on the person, and which uses the value of g (9.81) as reference to convert the weight (602.8 N) into a mass (62 kg).
When the person is in the elevator, the scale says 77 kg. The scale is still using the same value of conversion (9.81), so the apparent weight "felt" by the scale is

This is the normal reaction applied by the scale on the person, and which is directed upward. Besides this force, there is still the weight W of the person, acting downward. So, if we use Newton's second law:


where a is the acceleration of the elevator. If we solve for a, we find

The negative sign means the acceleration is in the opposite direction of g (which we take positive), so it means the elevator is going upward.
The wavelengths of the light are 4.3 * 10^-12 m and 0.2 m respectively.
<h3>What is wavelength?</h3>
The term wavelength has to do with the horizontal distance that is covered by a wave. We know that a long wavelength implies that the wave is able to travel a long distance from one point to another.
Given that;
c = λf
c = speed of light
λ = wavelength of ight
f = frequency of light
Thus;
λ = 3 * 10^8/ 7.00 x 10^19
λ = 4.3 * 10^-12 m
λ = 3 * 10^8/1.50 x 10^9
λ = 2 * 10^-1 or 0.2 m
Learn more about wavelength:brainly.com/question/13533093
#SPJ1
Missing parts:
What are the wavelengths of electromagnetic wave in free space that have the following frequencies? (a) 7.00 x 10^19 Hz______ pm (b) 1.50 x 10^9 Hz__________ cm
Answer:
<em>-2 units of charge</em>
Explanation:
charge on A = Qa = -6 units
charge on B = Qb = 2 units
if the spheres are brought in contact with each other, the resultant charge will be evenly distributed on the spheres when they are finally separated.
charge on each sphere will be = 
charge on each sphere =
=
= <em>-2 units of charge</em>