1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kirza4 [7]
3 years ago
14

A 2.0-kilogram mass is located 3.0 meters above

Physics
2 answers:
skad [1K]3 years ago
5 0
<span>(3) 9.8 N/kg is your answer.</span>
leva [86]3 years ago
4 0

The correct answer is: Option (3) 9.8 N/kg

Explanation:

According to Newton's Law of Gravitation:

F_g = \frac{GmM}{R^2} --- (1)

Where G = Gravitational constant = 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²

m = Mass of the body = 2 kg

M = Mass of the Earth = 5.972 × 10²⁴ kg

R = Distance of the object from the center of the Earth = Radius of the Earth + Object's distance from the surface of the Earth = (6371 * 10³) + 3.0 = 6371003 m

Plug in the values in (1):

(1)=> F_g = \frac{6.67408 * 10^{-11} * 2 * 5.972*10^{24}}{(6371003)^2} = 19.63

Now that we have force strength at the location, we can use:

Force = mass * gravitational-field-strength

Plug in the values:

19.63 = 2.0 * gravitational-field-strength

gravitational-field-strength = 19.63/2 = 9.82 N/kg

Hence the correct answer is Option (3) 9.8 N/kg

You might be interested in
PLEASE HELP! Compare and contrast between reflection and refraction. Be sure to be specific in your explanation and state in you
horsena [70]

Most ultrasound technicians train in an associates degree, but can also get a bachelors degree in the field. There is also certification programs you can go through. Hope this helped!!! :)

7 0
3 years ago
Consider a uniformly charged sphere of radius Rand total charge Q. The electric field Eout outsidethe sphere (r≥R) is simply tha
AlexFokin [52]

1) Electric potential inside the sphere: \frac{Q}{8\pi \epsilon_0 R}(3-\frac{r^2}{R^2})

2) Ratio Vcenter/Vsurface: 3/2

3) Find graph in attachment

Explanation:

1)

The electric field inside the sphere is given by

E=\frac{1}{4\pi \epsilon_0}\frac{Qr}{R^3}

where

\epsilon_0=8.85\cdot 10^{-12}F/m is the vacuum permittivity

Q is the charge on the sphere

R is the radius of the sphere

r is the distance from the centre at which we compute the field

For a radial field,

E(r)=-\frac{dV(r)}{dr}

Therefore, we can find the potential at distance r by integrating the expression for the electric field. Calculating the difference between the potential at r and the potential at R,

V(R)-V(r)=-\int\limits^R_r  E(r)dr=-\frac{Q}{4\pi \epsilon_0 R^3}\int r dr = \frac{-Q}{8\pi \epsilon_0 R^3}(R^2-r^2)

The potential at the surface, V(R), is that of a point charge, so

V(R)=\frac{Q}{4\pi \epsilon_0 R}

Therefore we can find the potential inside the sphere, V(r):

V(r)=V(R)+\Delta V=\frac{Q}{4\pi \epsilon_0 R}+\frac{-Q}{8\pi \epsilon_0 R^3}(R^2-r^2)=\frac{Q}{8\pi \epsilon_0 R}(3-\frac{r^2}{R^2})

2)

At the center,

r = 0

Therefore the potential at the center of the sphere is:

V(r)=\frac{Q}{8\pi \epsilon_0 R}(3-\frac{r^2}{R^2})\\V(0)=\frac{3Q}{8\pi \epsilon_0 R}

On the other hand, the potential at the surface is

V(R)=\frac{Q}{4\pi \epsilon_0 R}

Therefore, the ratio V(center)/V(surface) is:

\frac{V(0)}{V(R)}=\frac{\frac{3Q}{8\pi \epsilon_0 R}}{\frac{Q}{4\pi \epsilon_0 R}}=\frac{3}{2}

3)

The graph of V versus r can be found in attachment.

We observe the following:

- At r = 0, the value of the potential is \frac{3}{2}V(R), as found in part b) (where V(R)=\frac{Q}{4\pi \epsilon_0 R})

- Between r and R, the potential decreases as -\frac{r^2}{R^2}

- Then at r = R, the potential is V(R)

- Between r = R and r = 3R, the potential decreases as \frac{1}{R}, therefore when the distance is tripled (r=3R), the potential as decreased to 1/3 (\frac{1}{3}V(R))

Learn more about electric fields and potential:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

7 0
3 years ago
A horizontal pipe contains water at a pressure of 110 kPa flowing with a speed of 1.4 m/s. When the pipe narrows to one half its
Pavel [41]

Answer:

a

  v_2 =  5.6 \  m/s

b

   P_2 = 80600 \  Pa

Explanation:

From the question we are told that  

     The pressure of the water in the pipe is  P_1= 110 \  kPa  =  110 *10^{3 } \  Pa

      The speed of the water  is v_1 =  1.4 \  m/s

       The original area of the pipe is  A_1 =  \pi \frac{d^2 }{4}

       The  new area of the pipe is  A_2 = \pi *  \frac{[\frac{d}{2} ]^2}{4}  =  \pi *  \frac{\frac{d^2}{4} }{4} = \pi \frac{d^2}{16}

         

Generally the continuity equation is mathematically represented as

       A_1 *  v_1 =  A_2 * v_2

Here v_2 is the new velocity  

So

        \pi * \frac{d^2}{4}   *  1.4  = \pi * \frac{d^2}{16}   * v_2

=>     \frac{d^2}{4}   *  1.4  =  \frac{d^2}{16}   * v_2

=>    d^2    *  1.4  =  \frac{d^2}{4}   * v_2

=>    1.4  = 0.25    * v_2

=>     v_2 =  5.6 \  m/s

Generally given that the height of the original pipe and the narrower pipe are the same , then we will b making use of the  Bernoulli's equation for constant height to calculate the pressure

This is mathematically represented as

       

             P_1 + \frac{1}{2}  *  \rho *  v_1 ^2  =  P_2 + \frac{1}{2}  *  \rho *  v_2 ^2

Here \rho is the density of water with value  \rho =  1000  \  kg /m^3

             P_2 =  P_1 + \frac{1}{2} *  \rho [ v_1^2 - v_2^2 ]

=>          P_2 =  110 *10^{3} + \frac{1}{2} *  1000 *  [ 1.4 ^2 - 5.6 ^2 ]

=>          P_2 = 80600 \  Pa

4 0
2 years ago
Which of the following describes sound waves?
lianna [129]
The answer is c) electromagnetic sawed in which the vibrations are perpendicular to the motion of the sound
8 0
2 years ago
Read 2 more answers
Which action is mostly likely to make the team on the left win
Lady bird [3.3K]
D. adding one student to the team on the left
7 0
2 years ago
Other questions:
  • Whats the difference between relative dating and absolute dating
    5·2 answers
  • .....i need help with another......
    12·2 answers
  • Find the velocity at which the bowling ball must move for its kinetic energy to be equal to that of the meteorite.
    13·1 answer
  • police force open a door with 879 N applied directly to a door by a battering ram. if the ram struck 80 cm away from the hinge ,
    15·1 answer
  • If you speak via radio from Earth to an astronaut on the Moon, approximately how long is it before you can get a reply
    8·1 answer
  • The angle of incidence at a solid/liquid boundary is 59.6a?°, and the index of refraction of the solid is n = 1.55. (a what must
    14·1 answer
  • ________ is a change in the position of a body with respect to time relative to a reference point.
    6·2 answers
  • An airplane flies at 150 km/hr. (a) The airplane is towing a banner that is b = 0.8 m tall and l = 25 m long. If the drag coef-
    9·1 answer
  • How to do this question?​
    7·1 answer
  • 1.25 is the closest to 1.04 or not I want to answer please. I think it's true, but I want to prove it scientifically, please.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!