Answer:
D
Explanation:
I would say much too small as there is a significant portion of the plant that is UNDER water.....
( Really depends on how deep the water is...if it is shallow water it would be just a little too small)
Scatter light doesn't reflect, reflect light goes off a mirror.
The distance between two consecutive nodes and the amplitude after 0.56s are m/2 and 1.75×10^(-4) m respectively.
<h3>What's the distance between consecutive nodes of the displacement of air molecules?</h3>
- Wavelength is the distance between two consecutive nodes or toughs or crests or anti-nodes.
- So, distance between consecutive nodes = wavelength = 2π÷k
= 2π/(4π÷m)
= m/2
<h3>What's the amplitude after 0.56s of the displacement of air molecules?</h3>
Displacement after 0.56 s = 0.008×cos(50π×0.56s)
=1.75×10^(-4) m
Thus, we can conclude that the distance between consecutive nodes and displacement after 0.56 s are m/2 and 1.75×10^(-4) m respectively.
Disclaimer: The question was given incomplete on the portal. Here is the complete question.
Question: The particle displacement y of air molecules due to a sound wave is given by y=0.008coswtsinkz where k=4π÷m and w=50π rads/s.
Calculate:
I) the distance between 2 consecutive nodes
ii) the amplitude after 0.565s
Learn more about the wavelength here:
brainly.com/question/10750459
#SPJ1
Answer:
It would take
time for the capacitor to discharge from
to
.
It would take
time for the capacitor to discharge from
to
.
Note that
, and that
.
Explanation:
In an RC circuit, a capacitor is connected directly to a resistor. Let the time constant of this circuit is
, and the initial charge of the capacitor be
. Then at time
, the charge stored in the capacitor would be:
.
<h3>a)</h3>
.
Apply the equation
:
.
The goal is to solve for
in terms of
. Rearrange the equation:
.
Take the natural logarithm of both sides:
.
.
.
<h3>b)</h3>
.
Apply the equation
:
.
The goal is to solve for
in terms of
. Rearrange the equation:
.
Take the natural logarithm of both sides:
.
.
.
It helps because it's being transported blah blah whatever the last person said when you first asked this question