<span>Let's convert the speed to m/s:
speed = (55 mph) (1609.3 m / mile) (1 hour / 3600 seconds)
speed = 24.59 m/s
Let's convert the mass to kilograms:
mass = (2135 lb) (0.45359 kg / lb)
mass = 968.4 kg
We can find the kinetic energy KE:
KE = (1/2) m v^2
KE = (1/2) (968.4 kg) (24.59 m/s)^2
KE = 292780 joules
The kinetic energy of the automobile is 292780 joules.</span>
1. When the object is waiting to be released, it is storing a lot of potential energy. When it is released, the potential energy that was once stored is converted into kinetic energy.
Answer:
The ballon will brust at
<em>Pmax = 518 Torr ≈ 0.687 Atm </em>
<em />
<em />
Explanation:
Hello!
To solve this problem we are going to use the ideal gass law
PV = nRT
Where n (number of moles) and R are constants (in the present case)
Therefore, we can relate to thermodynamic states with their respective pressure, volume and temperature.
--- (*)
Our initial state is:
P1 = 754 torr
V1 = 3.1 L
T1 = 294 K
If we consider the final state at which the ballon will explode, then:
P2 = Pmax
V2 = Vmax
T2 = 273 K
We also know that the maximum surface area is: 1257 cm^2
If we consider a spherical ballon, we can obtain the maximum radius:

Rmax = 10.001 cm
Therefore, the max volume will be:

Vmax = 4 190.05 cm^3 = 4.19 L
Now, from (*)

Therefore:
Pmax= P1 * (0.687)
That is:
Pmax = 518 Torr
Answer:
Technician A only
Explanation:
Both high-side pressures and low-side pressures are low with the engine running and the selector set to the air-conditioning position. Technician A says that the system is undercharged. Technician B says the cooling fan could be inoperative. Which technician is correct?
usually . An overcharged system will result in lower than normal low side pressures
An undercharged system will not enable the compressor to create pressure. As a result of the low amount of refrigerant, the cooling ability is reduced. When we say undercharged, we mean the refrigerant in the system is low, so the both the high side pressures and low side pressures will be low.