Answer:
C
Explanation:
The kicker exerts more force of the football which is why the football moves when its kicked.
Answer:
The frictional force is 
Explanation:
From the question we are told that
The coefficient of kinetic force is μk = 0.35
The normal force felt by the puck is 
Generally the frictional force that acts on the puck is mathematically represented as

=> 
=> 
Answer:
0.767m
Explanation:
We are given that the time interval between each droplet is equal.
We are also given that the fourth drop is just dripping from the shower when the first hits the floor.
If they fall at the same time interval and we know that the distance between the shower head and floor are the same, they must therefore fall at the same velocity.
The distance between each drop has to be the same given that they fall at equal time intervals.
Let this distance be x.
We can then partition the entire height of the system into three parts (as shown in the diagram).
Hence, we can say that:
x + x + x = 2.3m
3x = 2.3m
=> x = 2.3/3 = 0.767m
Therefore, at the time the first drop hits the floor, the third drop is only 0.767 m below the shower head.
Answer:

Explanation:
The maximum velocity of an object moving in a curve beyond which it will slide off the curve is given by the relationship in equation (1);

where
is the coefficient of friction between the object and the surface of the curve, g is acceleration due to gravity and r is the radius of the curve.
Given;
v = 0.8m/s
g = 
r = ?

In order to solve for
, we can simply make it the subject of formula from equation (1) as follows;

since we were not given the value of r, we can just substitute other known values, then solve and leave the answer in terms of r.
Therefore;


If there is no friction, the force that moves the box forward horizontally must be matched by the same force.
If there is friction, then the force moving it forward = frictional force + the additional force you need to add.