For a merry go round with a radius of R=1.8 m and moment of inertia I=184 kg-m^2 is spinning with an initial angular speed of w=1.48 rad/s is mathematically given as
F= 618.9 N
<h3>What is the centripetal
force?</h3>
Generally, the equation for the angular speed is mathematically given as
w = v/R
Therefore
w= 4.7/1.8
w= 2.611 rad/s
Where total momentum
Tm= 642.96 + 272.32
Tm= 915.28
and total inertia
Ti= 184 + 246.24
Ti= 430.24
In conclusion, centripetal force
F= mrw^2
F = m*R*w2^2
F = 76*1.8*2.127^2
F= 618.9 N
Read more about mass
brainly.com/question/15959704
CQ
Flag
a merry go round with a radius of R=1.8 m and moment of inertia I=184 kg-m^2 is spinning with an initial angular speed of w=1.48 rad/s in the counter clockwise direction when viewed from above a person with mass m=76 kg and velocity v=4.7 m/s runs on a path tangent to the merry go round once at the merry go round the person jumps on and holds on to the rim of the merry go round angular speed of the merry go round after the person jumps on 2.127 rad/s Once the merry go round travels at this new angular speed with what force does the person need to hold on?
Answer:
kinetic energy
Explanation:
Electrical energy is a type of kinetic energy caused by moving electric charges. The amount of energy depends on the speed of the charges – the faster they move, the more electrical energy they carry.
The closest answer is
Alpha - mass of 4 and charge of +2; beta - no mass and charge of -1; gamma - no mass and no charge (consists of energy)
It’s not exactly correct because a beta particle has the (small) mass of an electron (also the positron). All other choices are way off, I’d go with this one.
Answer:
The average velocity is 180 km/hr
Explanation:
Given;
initial velocity, u = 60 km per hour
final velocity, v = 120 km per hour
initial time = 1 hour
final time = 2 hour
Initial position = 60 km/h x 1 hour = 60 km
final position = 120 km/h x 2 hour = 240 km
The average velocity is given by;

Therefore, the average velocity is 180 km/hr
Answer:
For a wave, the <em>HIGHER </em>the amplitude, the <em>MORE </em>energy the wave carries.