Answer: sound waves or cosmic rays
Explanation:
Cosmic radiation consist of high energy particles,x-rays and gamma rays produce in space
Answer:
In the air
Explanation:
There are three states of matter:
- Solids: in solids, the particles are tightly bond together by strong intermolecular forces, so they cannot move freely - they can only vibrate around their fixed position
- Liquids: in liquids, particles are more free to move, however there are still some intermolecular forces keeping them close to each other
- Gases: in gases, particles are completely free to move, as the intermolecular forces between them are negligible
For this reason, it is generally easier to compress/expand the volume of a gas with respect to the volume of a liquid.
In this problem, we are comparing water (which is a liquid) with air (which is a gas). From what we said above, this means that the change in volume is larger in the air rather than in the water.
A = .3*g = 2.94 m/s²
<span>t = v/a = 9/2.94 = 3.061 sec </span>
<span>W = E/t = ½mv²/t = ½*40*9²/3.061 = 529.2 watts</span>
Yes it does ! The so-called "boiling point" is the temperature at which Bromine liquid can change state and become Bromine vapor, if enough additional thermal energy is provided. The boiling point is higher than room temperature.
Answer:
2.47 m
Explanation:
Let's calculate first the time it takes for the ball to cover the horizontal distance that separates the starting point from the crossbar of d = 52 m.
The horizontal velocity of the ball is constant:

and the time taken to cover the horizontal distance d is

So this is the time the ball takes to reach the horizontal position of the crossbar.
The vertical position of the ball at time t is given by

where
is the initial vertical velocity
g = 9.8 m/s^2 is the acceleration of gravity
And substituting t = 2.56 s, we find the vertical position of the ball when it is above the crossbar:

The height of the crossbar is h = 3.05 m, so the ball passes

above the crossbar.