They give us the cable tension t = 1500 newton. We assume that the mass of the cable is negligible compared to that of the tower.
We have a force t of 1500 Newton. This force has a vertical component on the y axis and a horizontal component on the x axis.
Of these two components of force, we are especially interested in calculating is the magnitude of the vertical component.
If the angle that it forms with the ground is 50 °, then the vertical component of the force is:
Fy = 1500sin (50)
Fy = 1149 N. <1200 N
The wire will not be loose
<h2>Hey there! </h2>
<h2>The correct option is:</h2>
<h3>"Government" </h3>
<h2>Explanation:</h2>
<h3>Government is responsible for ruling an authority in a proper way, so the answer is Government. </h3>
<h2>Hope it help you </h2>
a. I've attached a plot of the surface. Each face is parameterized by
•
with
and
;
•
with
and
;
•
with
and
;
•
with
and
; and
•
with
and
.
b. Assuming you want outward flux, first compute the outward-facing normal vectors for each face.





Then integrate the dot product of <em>f</em> with each normal vector over the corresponding face.










c. You can get the total flux by summing all the fluxes found in part b; you end up with 42π - 56/3.
Alternatively, since <em>S</em> is closed, we can find the total flux by applying the divergence theorem.

where <em>R</em> is the interior of <em>S</em>. We have

The integral is easily computed in cylindrical coordinates:


as expected.
Answer:
h=18.05 cm
Explanation:
Given that
m= 25 kg
K= 1300 N/m
x=26.4 cm
θ= 19.5 ∘
When the block just leave the spring then the speed of block = v m/s
From energy conservation



By putting the values


v=1.9 m/s
When block reach at the maximum height(h) position then the final speed of the block will be zero.
We know that

By putting the values

h=0.1805 m
h=18.05 cm