Explanation:
Given that,
A ball is tossed straight up with an initial speed of 30 m/s
We need to find the height it will go and the time it takes in the air.
At its maximum height, its final speed, v = 0 and it will move under the action of gravity. Using equation of motion :
v = u +at
Here, a = -g
v = u -gt
i.e. u = gt

So, the time for upward motion is 3.06 seconds. It means that it will in air for 3.06×2 = 6.12 seconds
Let d is the maximum distance covered by it.

Putting all values

Hence, it will go to a height of 45.91 m and it will in the air for 6.12 seconds.
Answer:
1 KM per minute is the real speed in minutes, turn that into 1000 meters per minute and divided by 60, you get a good number of 16.6666666667 which means you could go 50 meters per 3 seconds
Explanation:
so it would be 16.6666666667 meters per second
A trait shared by dolphins and bats that possibly led to the evolution of echolocation in these two animal groups will be the need to move quickly through dark environments.
<h3>What is the evolution of echolocation?</h3>
Our understanding of the evolution of echolocation in bats has shifted as a result of recent molecular phylogenies. These phylogenies imply that bats with advanced echolocation
According to one interpretation of these trees, laryngeal echolocation originated in the ancestor of all living bats. Echolocation may have been lost in Old World fruit bats
The vast adaptive radiation in echolocation call design is substantially controlled by ecology, demonstrating how environmental perceptual problems influence call design.
A trait shared by dolphins and bats that possibly led to the evolution of echolocation in these two animal groups will be the need to move quickly through dark environments.
Hence option A is correct.
To learn more about the evolution of echolocation refer to the link;
brainly.com/question/20789287
Answer:
I have made a mistake in my answer