Given:
M = 0.0150 mol/L HF solution
T = 26°C = 299.15 K
π = 0.449 atm
Required:
percent ionization
Solution:
First, we get the van't Hoff factor using this equation:
π = i MRT
0.449 atm = i (0.0150 mol/L) (0.08206 L atm / mol K) (299.15 K)
i = 1.219367
Next, calculate the concentration of the ions and the acid.
We let x = [H+] = [F-]
[HF] = 0.0150 - x
Adding all the concentration and equating to iM
x +x + 0.0150 - x = <span>1.219367 (0.0150)
x = 3.2905 x 10^-3
percent dissociation = (x/M) (100) = (3.2905 x 10-3/0.0150) (100) = 21.94%
Also,
percent dissociation = (i -1) (100) = (</span><span>1.219367 * 1) (100) = 21.94%</span>
Answer:
1. The electronic configuration of X is: 1s2 2s2 sp6 3s2
2. The configuration of the anion of Y (i.e Y^2-) is 1s2 2s2 2p6
3. The formula of the compound form by X and Y is given as: XY
Explanation:
For X to loss two electrons, it means X is a group 2 element. X can be any element in group 2. The electronic configuration of X is:
1s2 2s2 sp6 3s2
To get the electronic configuration of the anion of element Y, let us find the configuration of element Y. This is done as follows:
Y receives two electrons from X to complete its octet. Therefore Y is a group 6 element. The electronic configuration of Y is given below
1s2 2s2 2p4
The configuration of the anion of Y (i.e Y^2-) is 1s2 2s2 2p6
The formula of the compound form by X and Y is given below :
X^2+ + Y^2- —> XY
Their valency will cancel out thus forming XY
In 1869 Russian chemist DIMITRI MENDELEEV started the development of the periodic table,arranging chemical elements by atomic mass. He predicted the discovery of other elements and left spaces open in his periodic table for them. HOPE THIS HELPSS HAVE A GREAT DAY <333
i think the answer is B. They have low reactivity.Hope this helped (: