Answer:
a. glucose in water( solution)
b. smoke in air (colloids)
c. carbon dioxide in air (solution)
d. milk( colloids)
Explanation:
A solution is said to be formed when a solute dissolves in a solvent to form a homogeneous mixture. The solute particles are less than 10^-9m in size. Familiar solutions are those where the solute are dissolved in a liquid solvent. When the liquid water, the solution is known as an aqueous solution. A typical example is (glucose in water). In some other cases, the apparent solution of a solute in a solvent is accompanied by a chemical reaction and this is often known as a chemical reaction. A typical example is (carbon dioxide in air).
Colloids are also known as false solutions. Here, the individual solute particles are larger than the particles of the true solution, but not large enough to be seen by the naked eye. When a light beam is placed beside a beaker containing a colloid, the light rays of the beam can be clearly seen. This shows that it exhibits the Tyndall effect while a solution dosent exhibit such.
In a colloid, the liquid solvent is more appropriately know as the DISPERSION medium while the solid solute particles constitute the DISPERSED substance. This can either be solid, liquid or gas.
For example:
--> smoke in air : Dispersion medium is gas while the dispersed substance is solid.
--> milk: Dispersion medium is liquid while the dispersed substance is liquid.
Answer:
Explanation:
Each coil increases it by a multiple of 100.
=> 50 | 3 | <u><em>15,000</em></u>
=> 100 | 3 | <u><em>30,000</em></u>
=> 150 | 3 | <u><em>45,000</em></u>
Answer: 72 grams of
are needed to completely burn 19.7 g 
Explanation:
According to avogadro's law, 1 mole of every substance weighs equal to molecular mass and contains avogadro's number
of particles.
To calculate the number of moles, we use the equation:

Putting in the values we get:


According to stoichiometry:
1 mole of
requires 5 moles of oxygen
0.45 moles of
require=
moles of oxygen
Mass of 
72 grams of
are needed to completely burn 19.7 g 
Step one calculate the moles of each element
that is moles= % composition/molar mass
molar mass of Ca = 40g/mol, S= 32 g/mol , O= 16 g/mol
moles of Ca = 29.4 /40g/mol=0.735 moles, S= 23.5/32 =0.734 moles, O= 47.1/16= 2.94 moles
calculate the mole ratio by dividing each mole with smallest mole that is 0.734
Ca= 0.735/0.734= 1, S= 0.734/0.734 =1, O = 2.94/ 0.734= 4
therefore the emipical formula = CaSO4
Number of moles = mass of Ni /molecular mass of Ni
mass of nickel = 86.4 g
molecular mass of nickel = 58.69
number of moles of Ni in 86.4 g
=86.4/58.69
=1.472 mol
(rounded to four significant figures instead of three because the first digit of the answer starts with a 1).