Answer:

Explanation:
= Velocity of one lump = 
= Velocity of the other lump = 
m = Mass of each lump = 
The collision is perfectly inelastic as the lumps stick to each other so we have the relation

The velocity of the stuck-together lump just after the collision is
.
Its readily available
No Harmful emissions
Environment friendly
Renewable
Hydrogen isn't very good fuel source due to its high flammability and can create a nasty mini hydrogen bomb. <span />
Answer: the minimal force that you need to apply to move the bureau is F = 198.45N
Explanation:
If you want to move an object, you need to apply a force that is bigger than the force of the statical friction.
The force of statical friction can be written as.
Ff = k*N
where k is the coefficient of static friction, in this case, k = 0.45, and N is the normal force between the object and the surface.
In this case, the normal force is the weight of the bedroom bureau, this is:
N = m*g = 45kg*9.8m/s^2 = 441N
Then the force is:
Fr = 0.45*441N = 198.45N
This means that the minimal force that you need to apply to move the bureau is F = 198.45N
and after this point, the force of friction will work wit the kinetic coefficient of friction, that usually is smaller than the statical one.
My calculator is about 1cm thick, 7cm wide, and 13cm long.
Its volume is (length) (width) (thick) = (13 x 7 x 1) = 91 cm³ .
The question wants me to assume that the density of my calculator
is about the same as the density of water. That doesn't seem right
to me. I could check it easily. All I have to do is put my calculator
into water, watch to see if sinks or floats, and how enthusiastically.
I won't do that. I'll accept the assumption.
If its density is actually 1 g/cm³, then its mass is about 91 grams.
The choices of answers confused me at first, until I realized that
the choices are actually 1g, 10² g, 10⁴ g, and 10⁶ g.
My result of 91 grams is about 100 grams ... about 10² grams.
Your results could be different.
Out of the choices given, the best choice to explain the direction of the moving force of air is from area o high pressure to areas of low pressure.