Answer:
= 4.38 × 10³⁴kgm²/s
Explanation:
Given that,
mass of moon m = 9.5 × 10²²kg
Orbital radius r = 4.28 × 10⁵km
Orbital period T = 28.9days
T = 28.9 × 24 × 60 × 60
= 2,496,960s
Angular momentum of the moon about the planet
L = mvr
L = mr²w

Answer:
D
Explanation:
The student had displaced their in the class when she left. The phone is what's displaced and student leaving equals distance.
Gauss law states that the electric flux through any closed
surface is proportional to the net electric charge inside the surface. This is
expressed mathematically in the form of:
Φ = Q / εo
Where,
Φ = the electric flux = unknown (which we have to find for)
Q = the net electric charge = 5.0 µC = 5 E-6 C
εo = the permittivity of free space = a constant value =
8.85 E-12 C^2 / N m^2
Plugging in the values
into the equation will result in:
Φ = 5 E-6
C / (8.85 E-12 C^2 / N m^2)
Φ = 564,971.75 Wb = <span>5.6 x
10^5 Wb </span>
Specific heat capacity= heat energy/mass×temperature rise
962°C - 20°C = 942K
Heat energy (Eh) = 239 × 1.55 × 942
Eh= 348963.9J
shc of Ag: 238.6 J/kg-K
m of Ag: 1.55kg
Answer:
The correct answer is - 43%.
Explanation: The increase in CO2 between these two suggested periods is approximately 43%. Even though it is a natural process that the CO2 levels vary in the atmosphere, still this is not the same case nowadays. Nowadays, or rather in the past few decades, apart from the natural increase of CO2 in the atmosphere, it has seen a much more increased levels because of the human activity. The industrial facilities and the vehicles, the cutting of the forests and burning the wood (there's both release of CO2 from the burning of the trees and loss of natural accumulator of the CO2), are just some of the more important human activities that contribute to a significant rise in the CO2 levels.