Answer:
his acceleration rate is -0.00186 m/s²
Explanation:
Given;
initial position of the car, x₀ = 100 miles = 160, 900 m ( 1 mile = 1609 m)
time of motion, t₀ = 60 minutes = 60 mins x 60 s = 3,600 s
final position of the car, x₁ = 150 miles = 241,350 m
time of motion, t₁ = 100 minutes = 100 mins x 60 s = 6,000 s
The initial velocity is calculated as;
u = 160, 900 m / 3,600 s
u = 44.694 m/s
The final velocity is calculated as;
v = 241,350 m / 6,000 s
v = 40.225 m/s
The acceleration is calculated as;
Therefore, his acceleration rate is -0.00186 m/s²
Setting reference frame so that the x axis is along the incline and y is perpendicular to the incline
<span>X: mgsin65 - F = mAx </span>
<span>Y: N - mgcos65 = 0 (N is the normal force on the incline) N = mgcos65 (which we knew) </span>
<span>Moment about center of mass: </span>
<span>Fr = Iα </span>
<span>Now Ax = rα </span>
<span>and F = umgcos65 </span>
<span>mgsin65 - umgcos65 = mrα -------------> gsin65 - ugcos65 = rα (this is the X equation m's cancel) </span>
<span>umgcos65(r) = 0.4mr^2(α) -----------> ugcos65(r) = 0.4r(rα) (This is the moment equation m's cancel) </span>
<span>ugcos65(r) = 0.4r(gsin65 - ugcos65) ( moment equation subbing in X equation for rα) </span>
<span>ugcos65 = 0.4(gsin65 - ugcos65) </span>
<span>1.4ugcos65 = 0.4gsin65 </span>
<span>1.4ucos65 = 0.4sin65 </span>
<span>u = 0.4sin65/1.4cos65 </span>
<span>u = 0.613 </span>
I believe it’s divergent boundary but I might be wrong
C and D are units of length or distance.
A is a measured angle.
B is a unit of angular measurement.